This study presents a dual-impeller air-cooled heat exchanger aimed at improving thermal management in electro-optical tracking systems operating under high power density. Two geometric modifications were introduced to enhance flow characteristics and heat transfer performance: the curvature of the center plate and the integration of a pin-fin structure at the outlet. Through numerical simulation, the improved model demonstrated more efficient internal flow compared to the original model, achieved through enhanced inflow characteristics and reduced flow separation. The pin-fin structures induced localized turbulence and recirculation zones, contributing to an increased thermal exchange surface area and longer effective heat transfer time. Consequently, the outlet temperature of the internal system decreased by an average of 1.4°C across various rotational speeds, resulting in a 5.9% increase in heat exchanger efficiency compared to the original model. Overall, this study shows that structural enhancements in heat exchanger design can significantly improve the cooling performance of high-power electronic systems, suggesting practical applicability for advanced thermal management solutions.
Citations
Citations
Citations
Citations
Citations
Citations
Citations