Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"Master device"

Article category

Keywords

Publication year

Authors

"Master device"

REGULAR

Design and Control of Master Device with Force Feedback for Teleoperated ERCP Guidewire Insertion
Woocheol Shin, SeongHyeon Won, YongJung Lee, Daehie Hong
J. Korean Soc. Precis. Eng. 2025;42(9):723-733.
Published online September 1, 2025
DOI: https://doi.org/10.7736/JKSPE.024.133

ERCP (Endoscopic Retrograde Cholangiopancreatography) is a common procedure used to diagnose and treat biliary and pancreatic diseases. However, the repeated exposure to X-ray radiation during these procedures poses health risks to surgeons. Teleoperation systems can help reduce this exposure, but they face challenges such as the lack of force feedback and differences between the master device's mechanisms and the movements of surgical tools, which can diminish surgical precision. This study aimed to develop a master device with force feedback specifically for teleoperated ERCP guidewire insertion, drawing inspiration from the natural hand movements of surgeons. The device includes a ring-shaped translation control handle and a rotation control handle, both designed to allow unlimited movement, thereby intuitively replicating the operation of the guidewire. A force feedback system was incorporated to enable collision detection and prevent potential injuries during procedures. Experimental results showed that the proposed system enhances control precision, reduces handling inertia, and provides effective force feedback. These advancements ensure safer and more accurate guidewire manipulation, addressing key limitations of existing teleoperation systems. Ultimately, this device not only minimizes radiation exposure for surgeons but also facilitates intuitive and precise teleoperated ERCP procedures.

  • 16 View
  • 2 Download
Article
Distortion Compensation Algorithm for a Cable-Driven Master Device
Jinsu Park, Gyoungjun Lee, Yeri Sim, Sangrok Jin
J. Korean Soc. Precis. Eng. 2023;40(1):65-69.
Published online January 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.086
This paper presents a distortion compensation algorithm for cable-driven master devices. Such device has four string pots at four corners of a frame. Four cables are tied from the four corners to the center holder. When the central holder, which is a haptic grip, moves, lengths of the four cables will change. From the four cable lengths, the spatial position of the haptic grip can be estimated using triangulation. In this case, distortion such as barrel image of the image field occurs when estimating a position with an offset parallel to the plane in which the four string pots are located. The closer to the corner, the smaller the position estimate value is than the true value. After distortion phenomenon is modeled by projecting onto the ellipsoid, the position in the vertical direction of the cable plane is compensated by the corresponding value and flattened. The mean error in the x-direction position was improved by 91% from 0.7833±0.8381 mm to -0.0709±0.4341 mm. This cable-driven master device can be used as a haptic device for operating a surgical robot.
  • 4 View
  • 0 Download