Hands perform various functions. There are many inconveniences in life without the use of hands. People without the use of hands wear prostheses. Recently, there have been many developments and studies about robotic prosthetic hands performing hand functions. Grasping motions of robotic prosthetic hands are integral in performing various functions. Grasping motions of robotic prosthetic hands are required recognition of grasping targets. A path toward using images to recognize grasping targets exists. In this study, object recognition in images for grasping motions are performed by using object detection based on deep-learning. A suitable model for the grasping motion was examined through three object detection models. Also, we present a method for selecting a grasping target when several objects are recognized. Additionally, it will be used for grasping control of robotic prosthetic hands in the future and possibly enable automatic control robotic prosthetic hands.
Citations
Citations to this article as recorded by
A Study on Defect Detection Model of Bone Plates Using Multiple Filter CNN of Parallel Structure Song Yeon Lee, Yong Jeong Huh Journal of the Korean Society for Precision Engineering.2023; 40(9): 677. CrossRef
The white-light scanning interferometer (WSI) is an effective optical measurement system for high-precision industries (e.g., flat-panel display and electronics packaging manufacturers) and semiconductor manufacturing industries. Its major disadvantages include a slow image-capturing speed for interferogram acquisition and a high computational cost for peak-detection on the acquired interferogram. Here, a WSI system is proposed for the semiconductor inspection process. The new imaging acquisition technique uses an ‘on-the-fly’ imaging system. During the vertical scanning motion of the WSI, interference fringe images are sequentially acquired at a series of pre-defined lens positions, without conventional stepwise motions. To reduce the calculation time, a parallel computing method is used to link multiple personal computers (PCs). Experiments were performed to evaluate the proposed high-speed WSI system.
Multizeros(multiple order zeros) optical beams which belong to the Laguerre-Gaussian beams, have rotational phase and conically-shaped amplitude structures around multizeros points in their phase and amplitude profiles, respectively. Especially, they have their own characteristics that the multizero points do not vanish over free-space propagation.Therefore, they are expected to be adequate for the applications of long-range optical measurement by using their multizero points as optical markers for the deformation sensing. In this paper, fundamental properties of multizeros optical beams for long-range optical measurement applications are investigated and clarified. In particular, the mathematical investigations are described on the characteristics of multizeoros optical beams such as (1) separation of a multizero into isolated single order zeros, (2) topological charge of zeros distribution which are induced by superposing them. And also the outline of a fundamental experiment and its result are explained briefly.
A flexure hinge-based compliant stage driven by stack-type piezoelectric elements has high precision motion but small operational range due to the characteristics of the piezoelectric element. Since the common flexure hinges can be broken by excessive deflection when the displacement is amplified by a high amplification ratio, a flexure hinge mechanism for large deflection is required. A cartwheel-type flexure hinge has an advantage of larger deflection compared with the common flexure hinges. This study presents a rotation stage with cartwheel-type flexure hinges driven by a stack-type piezoelectric element. The characteristics and the performance of the rotation stage are described by the terms of principal resonance frequency, amplification ratio of rotational displacement, maximum rotational displacement and block moment, in which the terms are analyzed by geometric parameters of the rotation stage. The analyzed results will be used as the guideline of the design of the rotation stage.