Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

3
results for

"Pulsed laser"

Article category

Keywords

Publication year

Authors

"Pulsed laser"

Articles
Analysis of TGV Formation on Glass Substrates according to SLM Image
Jonghyeok Kim, Byungjoo Kim, Sanghoon Ahn
J. Korean Soc. Precis. Eng. 2025;42(7):521-527.
Published online July 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.062
The demand for high-speed processing and big data has accelerated the adoption of three-dimensional integrated circuits (3D ICs), where interposers serve as essential components for chip-to-chip connectivity. However, silicon interposers using the through-silicon via (TSV) technology have structural limitations. As alternatives, glass-based interposers employing the through-glass via (TGV) technology are gaining attention. This study explored the fabrication of via holes in glass substrates using the selective laser etching (SLE) process. A spatial light modulator (SLM) was used to generate donut- shaped bessel beams by inserting an image pattern without relying on phase modulation. The machinability of via holes fabricated with these beams was compared to that of holes formed using phase-modulated beams. Effect of pulse energy on taper angle was also investigated. Hourglass-shaped holes were observed at lower pulse energies. However, taper angles approaching 90° were observed at higher energies, indicating an improved verticality.
  • 7 View
  • 0 Download
Compact Optical Autocorrelator with 0.1-Meter Scanning Range Using a Rotating Pair of Mirrors
Jaehyung Jang, Seunghoo Lee, Woojeong Lee, Hyeonwoo Lim, Joohyung Lee
J. Korean Soc. Precis. Eng. 2021;38(5):343-349.
Published online May 1, 2021
DOI: https://doi.org/10.7736/JKSPE.020.118
We present a rotating pair of mirrors based optical autocorrelator which is capable of providing a 0.1 m scanning range. The rotating mirror-pair technique enables rapid data update-rate, compactness, and simpler data post-processing compared to that of conventional linear motion-based optical autocorrelators. We optimized the geometrical design of the mirror-pair configuration by using off-the-shelf mirrors and conducted a simulation to calculate the expected capability of the scanning range. By exploiting a He-Ne laser as a light source, we validated the performance of the autocorrelator in its provision of a 100 mm scanning range and 0.2 Hz data update-rate, which was limited by the adopted commercial data sampling device, and not limited by the proposed principle. The developed autocorrelator is expected to be adopted for various applications that require sub-cm-1 spectroscopic resolution.
  • 5 View
  • 0 Download
Preparation of SrCo0.8Nb0.1Ta0.1O3-δ as a Cathode for Solid Oxide Fuel Cells by Pulsed Laser Deposition
Sangbong Ryu, Wonjong Yu, Arunkumar Pandiyan, Sanghoon Lee, Wonyeop Jeong, In won Choi, Myung Seok Lee, Suk Won Cha
J. Korean Soc. Precis. Eng. 2020;37(1):83-87.
Published online January 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.051
Recently, new perovskite cathode material, SrCo0.8Nb0.1Ta0.1O3-δ (SCNT) was reported, showing high oxygen reduction reaction (ORR) activity. This study demonstrates thin film deposition of SCNT by pulsed laser deposition technique applied to anodic aluminum oxide (AAO) based thin-film solid oxide fuel cells (TF-SOFCs) to assess the possibility of SCNT application to TF-SOFCs. The SCNT powder and the target were prepared by the solid state reactive sintering method (SSRS). This target was then mounted to the pulsed laser depositing machine and deposited on the Si wafer, and the nano-porous substrate, AAO. The physical structure and the chemical phase were investigated by the field emission scanning electron microscope, focused ion beam scanning electron microscope, and X-ray diffraction. On the top of the AAO, thin Pt film and yttria stabilized zirconia (YSZ) were first deposited by sputtering and the SCNT was deposited on the top of it afterward. The open circuit voltage of AAO cell was tested at 500°C, and successful polarization activity of SCNT was observed.
  • 5 View
  • 0 Download