The purpose of this study was to suggest the method for automated locomotion modes (Level Walking, Stair Ascent, Stair Descent) detection based on the Radial Basis Function Support Vector Machine (RBF-SVM) for the hip gait assist robot. The universal hip gait assist robot had a limit in detection of the walking intention of users because of the limited sensors’ quantity. Through the offline training, using MATLAB, we trained the collected gait data of users wearing the hip gait assist robot and obtained the parameter of the RBF-SVM model. In the online test, using LabVIEW, we developed the algorithm for the locomotion modes decision of individuals using the optimized parameter of the RBF-SVM. Finally, we executed the gait test for three terrains through the walking environment’s test platform. As a result, the locomotion modes decision rate for three terrains was 98.5%, 99%, and 98% respectively. And the decision delay time of algorithm was 0.03 s, 0.03 s, and 0.06 s respectively.
Citations
Citations to this article as recorded by
A fuzzy convolutional attention-based GRU network for human activity recognition Ghazaleh Khodabandelou, Huiseok Moon, Yacine Amirat, Samer Mohammed Engineering Applications of Artificial Intelligence.2023; 118: 105702. CrossRef
Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors Dongbin Shin, Seungchan Lee, Seunghoon Hwang Sensors.2021; 21(8): 2785. CrossRef