With rapid growth of the global electric vehicle market, interest in the development of secondary batteries such as lithium batteries is also increasing. Core functional parts of secondary batteries are known to determine the performance of these batteries. Micro cracks, scratches, and markings that may occur during the manufacturing process must be checked in advance. As part of developing an automated inspection system based on machine vision, this study optimized the design of a linear feeder exposed to an environment with a specific operating frequency continuously to transfer parts at a constant supply speed. Resonance can occur when the natural frequency and the operating frequency of the linear feeder are within a similar range. It can negatively affect stable supply and the process of finding good or defective products during subsequent vision tests. In this study, vibration characteristics of the linear feeder were analyzed using mode analysis, frequency response analysis, and finite element analysis. An optimal design plan was derived based on this. After evaluating effects on vibration characteristics for structures in which vibrations or periodic loads such as mass and rails were continuously applied, the shape of the optimal linear feeder was presented using RSM.
This study is to investigate the cooling performance of the battery in the electric vehicle depending on the attachment of the cooling plates and materials to the battery cells. Research focused on the numerical comparison of forced convective heat transfer coefficients with case 1(cell-Al, cooling plate-None), case 2(cell-Al, cooling plate-Al), case 3(cell-Al, cooling plate-C), and case 4(cell-C, cooling plate-Al). Normalized local Nusselt number of the cooling area at the normalized width position indicated that the heat transfer coefficient of the case 1 was averaging at 7, 14.5, 11.9% lower than that of case 2, case 3, and case 4. Based on case 3, the cooling performance with six different types of mass flow rates (0.05, 0.075, 0.0875, 0.1, 0.125, 0.15 kg/s) were compared. Normalized local Nusselt number at the normalized width position indicated that the heat transfer coefficient of 0.0875 kg/s was averaging at 35.8, 11.9% higher than that of 0.05, 0.075 kg/s and 12.3, 36.4, 60% lower than that of 0.1, 0.125, 0.15 kg/s. Ultimately, the best optimization design for air-cooling performance was case 3 with mass flow rate of 0.125 kg/s.
This research is to investigate the augmentation of cooling performance of water-cooling in the electric vehicle secondary battery. The research focused on the numerical study of heat transfer coefficients for cooling performance augmentation. To improve the water-cooling performance with three different inlet sections of water-cooling and five different mass flow rates, air-cooling, and water-cooling were compared. To compare the water-cooling performance, selected local positions for various temperature distributions were marked on the battery cell surface. The normalized local Nusselt number of the cooling area at the normalized height position indicated that the heat transfer coefficient of the combined section was averaging at 77.95 and 58.33% higher than that of the circle and square, respectively. The heat transfer coefficient with the normalized width by water-cooling at combined section was averaging at 5.15 times higher than that of the air-cooling. At the normalized height, the cooling performance at the water flow rates of 10 Lpm was averaging at 68-74% higher than that of 5 Lpm and 35-39% lower than that of 25 Lpm. Ultimately, the best cooling performance existed with the combined section, and the water flow rate of 10 Lpm was most appropriate, given the temperature difference and power consumption.
Citations
Citations to this article as recorded by
Influence of heat-transfer surface morphology on boiling-heat-transfer performance RenDa He, ZhiMing Wang, Fei Dong Heat and Mass Transfer.2022; 58(8): 1303. CrossRef
This study is to investigate the cooling performance of the secondary battery in electric vehicles according to three different gaps between battery cells. To accomplish the convective cooling performance of the battery surface with three different gaps, selected local positions (X, Y, Z) for various temperature distributions were marked on the gap surface contacting the cell surface. The cooling performance of the gap of 0.5 mm was compared with the gaps of 5 mm, and 1 mm. Normalized local Nusselt number of the cooling area at the normalized width position indicated that the gap of 0.5 mm was on average 26.99% lower than that of 5 mm and 0.49% lower than that of 1 mm. At the normalized height, the gap of 0.5 mm was on average 12.12% higher than that of 1 mm. Because of the vortex at the outlet area, cooling performance at the gap of 0.5 mm was on average 13.19% higher than that of 5 mm and 0.79% higher than that of 1 mm at normalized thickness. Ultimately, the best cooling performance existed at the gap of 5 mm, but the gap of 0.5 mm was best for improving space efficiency, energy storage capacity, and vehicle-driving durability.
Citations
Citations to this article as recorded by
A Study on Cooling Performance Augmentation of Water-Cooling and Optimization Design Utilizing Carbon Material in Electric Vehicle Secondary Battery Seung Bong Hyun, Dong-Ryul Lee Journal of the Korean Society for Precision Engineering.2020; 37(7): 519. CrossRef
Optimization Design for Augmentation of Cooling Performance Utilizing Leading-Edge Materials in Electric Vehicle Battery Cells Byeong Yeop Kim, Dong-Ryul Lee Journal of the Korean Society for Precision Engineering.2020; 37(7): 529. CrossRef
This study is to investigate convection cooling performance of the Secondary Battery of Electric Vehicle without heat sink. Research is focused on the comparative study on cooling between forced convection and natural convection cooling. Selected local locations for various temperature distributions had shown in the flow domain. Final temperature on the cell surface has been compared by forced convection with natural convection. According to the results of velocity and temperature distributions in the fluid domain, Buoyancy appear by density difference in the natural convection. Apparent vortex was detected in the fluid domain for forced convection. According to calculations of convective heat transfer coefficient between cell and atmosphere in the battery pack, average value of more 70-78% heat transfer coefficient increased by forced convection than natural convection. Average temperature value of the cell surface decreased up to 46.50% by forced convection. Due to vortex by air, cooling performance of forced convection is excellent. In addition, cooling on edge of the battery is better than heat source location.
Citations
Citations to this article as recorded by
A Study on Heat Radiation Performance for Different Layout of Electric Vehicle Secondary Battery Cell Seung Bong Hyun, Byeong Yeop Kim, Ji Hun Song, Dong-Ryul Lee Journal of the Korean Society for Precision Engineering.2020; 37(4): 271. CrossRef
The heat-sealing strength of pouch film greatly affects the reliability of the lithium ion secondary battery. In this paper, the researchers investigated and evaluated the properties of the heat-sealing strength of pouch film, such as heat, pressure, time, thickness of the heat-seal, and the polypropylene material. The heat-sealing strength showed a high value at 180℃ for 3 seconds. However, under the conditions of higher temperatures and longer times, deformation and bulging of polypropylene were observed. The heat-sealing strength tended to increase when decreasing heat-seal thickness. The heat-sealing strength varied according to the type of polypropylene. In addition, to avoid defects that may have occurred in the process of manufacturing the lithium ion secondary battery, the heat-sealing strength in the state where the impurities remained was evaluated.
This paper studied the adhesive strength and electrolyte resistance of the pouch film according to the kind of the extruded resin, which is the basis of the numerous variables in extrusion lamination. After preparing a pouch film by using various extruded resins, we measured the adhesive strength and electrolyte resistance between the aluminum foil and the CPP film. The minimal difference was observed between the adhesive strength with the extruded resin. Also, the extruded resin used in the experiment did not satisfy the electrolyte resistance. An electrolyte resistance was obtained by addition of the functional resin to the extruded resin. The addition of functional resins resulted in improved adhesive strength and electrolyte resistance, that were measured to be approximately 1300 gf/15 mm and 800 gf/15 mm, respectively, at 85℃ for 7days.
In this study, the intention is the determination of the optimum laminate conditions for the improvement of the chemical resistance of the aluminum-pouch films that are widely used as a packaging material for the secondary battery. Here, the properties including the initial adhesive strength and the electrolyte resistance between the metal-film layer with aluminum and the sealant layer with cast polyprophylene (CPP) film were investigated. Regarding the lamination condition, the lamination temperature, speed, and pressure conditions were changed. A roll-to-roll dry lamination-coating system was used in the surface-treatment agent coating, adhesive coating, and film lamination. For the lamination conditions of the aluminum and CPP films, the initial adhesive strength of the laminated-pouch film manufactured with a 110oC temperature and a 6.0 M/min line speed is 1200 gf/15 mm. The measured adhesive strength of the 85oC electrolyte resistance after its immersion for 7 days is 600 gf/15 mm.