Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"Soonjae Pyo"

Article category

Keywords

Publication year

Authors

"Soonjae Pyo"

SPECIAL

Performance Study of Dielectric Elastomer Actuators with Varying Thickness of Carbon Nanotube Electrodes and Pre-stretch Ratios
Mingyu Kang, Joong-Hyun Park, Jong-An Choi, Jingu Jeong, Soonjae Pyo
J. Korean Soc. Precis. Eng. 2025;42(10):817-823.
Published online October 1, 2025
DOI: https://doi.org/10.7736/JKSPE.D.25.00004

This study examines how two key design parameters—the pre-stretch ratio and the thickness of the carbon nanotube (CNT) electrode—affect the actuation performance of dielectric elastomer actuators (DEAs). DEA samples are created with varying pre-stretch levels (50% and 125%) and different amounts of CNT spray coating (4 and 8 mg), and their threshold voltages and areal strains are quantitatively assessed. The experimental results indicate that higher pre-stretch ratios result in lower threshold voltages and greater areal deformations, while increased CNT thickness typically reduces actuator deformation due to enhanced mechanical stiffness. The combination of a high pre-stretch ratio and low CNT loading demonstrates improved electro-mechanical responsiveness at moderate voltages. These findings underscore the interconnected effects of structural and electrode design on DEA performance, offering practical design guidelines for optimizing soft actuator systems. This research lays a solid foundation for future applications of DEAs in haptic interfaces, wearable actuators, and soft robotics.

  • 7 View
  • 0 Download
Article
Wind-powered Triboelectric Nanogenerator Using Contact-separation of Two Cylindrical Structures
Jong-An Choi, Jingu Jeong, Mingyu Kang, Soonjae Pyo
J. Korean Soc. Precis. Eng. 2023;40(12):939-945.
Published online December 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.025
In this paper, we develop a cylindrical triboelectric nanogenerator (TENG) for omnidirectional wind energy harvesting, by designing a slanted slit structure along the outer surface of the cylinder. The TENG consists of an inner cylinder based on Al film and a 3D printed outer structure. Wind blowing through the slits of the outer structure causes the inner cylinder to rotate in the slanted direction, and the contact-separation between the Al cylinder and polytetrafluoroethylene attached to the inner surface of the outer structure generates an output voltage. The performance of the harvester with different inner cylinder diameters under various wind speeds is experimentally studied. The results indicate that the TENG with a smaller Al cylinder is suitable for a self-powered wind speed sensor while that with a larger cylinder is optimal for efficient energy harvesting. In addition, the TENG is capable of harvesting wind energy in all directions. Its potential utility to be used as a supplementary power source for small electronic devices is verified through various experiments. Based on its compact size, simple design, and ease of manufacturing, the proposed TENG can be used as a low-cost, portable harvester.
  • 6 View
  • 0 Download