Condensation is an important research topic that ensures increased energy efficiency. Our researchers aimed to optimize heat transfer in industrial heat exchanger tubes through surface modification. We first succeeded in fabricating superhydrophilic and superhydrophobic tubes using surface modification. We observed the condensation phenomenon on the outside of the tube and evaluated the heat transfer performance through a condensation experimental facility. As a result, we found that the condensation heat transfer efficiency of superhydrophobic tubes is superior to that of conventional tubes. However, the heat transfer efficiency of the superhydrophobic tube reduced with an increase in saturation. To improve performance degradation, superhydrophilic and superhydrophobic hybrid tubes were fabricated and evaluated for their potential to improve heat transfer efficiency. As a result, we found that the liquid film generated by filmwise condensation on the superhydrophilic surface swept past the residual droplets generated by dropwise condensation on the superhydrophobic surface, resulting in the best heat transfer performance. Our results break the stereotypes of previous studies and provide a new paradigm for achieving optimal heat transfer performance on large-area curved surfaces. This research is expected to be widely applied in a variety of industries where energy efficiency is critical.
Purification of water through oil–water separation is essential for preserving the ecosystem and protecting human health. Although a conventional polypropylene depth filter can effectively purify water, modifying the wettability of a filter for oil–water separation is difficult owing to its low reactivity. In this study, we developed a superhydrophilic polypropylene filter with a hydrogel layer that could enable effective oil–water separation by using plasma treatment and dip coating, which enabled an even distribution of the coating solution across the filter. The fabricated filter was superhydrophilic with a water contact angle of 0o. It showed a high repulsive force with oil in water with an underwater oil contact angle of 142.9o. When such filter was applied to an oil–water separation device, it effectively purified water with low oil content (< 15 ppm) at a flow rate of 300 mL/min. These results demonstrate potential applications of such filters in areas such as wastewater treatment and oil spill cleanup.
In a pilot natural super-hydrophobic surfaces study, a super-hydrophobic surface was made by coating, etching, laser ablation, chemical vapor deposition and lithography. In this study, cone-shaped periodic micro and nano-structures were constructed on a silica surface with femtosecond and picosecond laser, and the period of micro-structures between cone shape patterns was increased with 10 μm intervals. The contact angle and image of the super-hydrophobic surface were analysed and the cone (Aspect-ratio 1.27) shape model with micro-protrusion structure similar to the surface of the lotus leaf was made to measure the contact angle. To analyse the differences in the contact angles between the cone shapes and heights of the micro-protrusion, different samples with cone (Aspect-ratio 1.27), sphere (Aspect-ratio 1.00) shapes were made through laser micro-machining technology. To mimick the natural lotus leaves, the optimum condition was a cone shape. Samples of PDMS with different shapes and mixed micro/nano-structures were fabricated with a PDMS mold insert. The largest contact angle was measured at 170.42° which is similar to the contact angle of the lotus leaf. This mold insert could be used repeatedly. The molding process is advantageous for large areas and mass production.
Citations
Citations to this article as recorded by
Study on Micro Grooving of Tungsten Carbide Using Disk Tool Min Ki Kim, Chan Young Yang, Dae Bo Sim, Ji Hyo Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2024; 41(2): 123. CrossRef
Super-wettability surface has various applications and actively studied in many fields. However water droplet transmissivity on super-wettability mesh was not be studied. This work is about water droplet transmissivity of an aluminum mesh with super-wettability on its surface. The mesh which fabricated surface structures with semi-permanent and non-etching process has super-wettability without strength drop of mesh structure. With this process, water droplet transmissivity was measured along various mesh pore per inch and dropping angle. Also water droplet transmissivity along dropping height was measure with super-hydrophobic mesh. As a result, super-hydrophilic mesh shows similar transmissivity behavior with bare mesh which has hydrophilic surface at high pore per inch and high dropping angle, super-hydrophobic 120 mesh shows lowest water droplet transmissivity in various situation.