Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"Tubular"

Article category

Keywords

Publication year

Authors

"Tubular"

Articles
Numerical Study on Ultimate Strength of Non-uniform Corroded Tubular T-joints under Compression
Vu Dan Chinh, Hà Thi Thu
J. Korean Soc. Precis. Eng. 2023;40(9):705-717.
Published online September 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.044
The literature states that the existing guidelines mainly focus on the ultimate strength of uniform corroded joints in the Jacket-type re-assessment. However, joints are non-uniformly corroded in different shapes in reality. Results derived from theoretical equations in these scenarios are significantly different from the actual capacity of the frame joints. This paper studies the influences of thickness and corroded area on the T- joint’s ultimate strength for a chord based on the numerical model ABAQUS. Numerical results show the effects of location and dimension at corroded areas on the tubular joint ultimate strength. Moreover, this research proposes a new formula based on API to estimate the strength of T-joints connected with non-uniform corroded compressive braces in certain conditions. This equation is validated by comparison of the numerical simulation in independent cases.
  • 5 View
  • 0 Download
Tubular Nano-Mesh Fabrication by Aluminum Anodic Oxidation
Seung Won Choi, Hyung Jin Kim, Woong Ki Jang, Young Ho Seo, Byeong Hee Kim
J. Korean Soc. Precis. Eng. 2017;34(7):501-505.
Published online July 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.7.501
This paper presents a construction method regarding a tubular nano-mesh for which the anodic oxidation of aluminum (Al) wire is used. The first step of tubular-nano-mesh production is Al-wire anodization. A new anodizing device was made for the wire-based uniform anodization for this study, and a high-purity (99.999%) Al wire with a 2 mm diameter was used. Also, an electrolytic solution was used as a 0.07 M oxalic acid, while the electrolytic-solution temperature was maintained at -3℃. While the applied voltage and the process time were varied, the AAO (Anodic Aluminum Oxide) characteristics of the Al wire were observed. When 60 V was applied to the wire, alumina cracks were not evident, whereas the application of 100 V produced alumina cracks; this is because the growth rate of the nano-pore voltage affected the alumina shape. For the subsequent construction of the tubular alumina structure, an Al-etchant (HCl + H2O + CuCl2 + 2H2O) etched-Al portion of the anodized wire was employed. The final step is a pore-widening process that is implemented through the hole channel. The anodized wire was dipped in the alumina etchant, and the pore-wall removal was checked over time.

Citations

Citations to this article as recorded by  Crossref logo
  • Effect of Nanochannel Size of Surface Treated Thru-Hole Alumina Membrane in Rejection of Polar Molecules
    Eui Don Han, Byeong Hee Kim, Young Ho Seo
    International Journal of Precision Engineering and Manufacturing.2018; 19(2): 287.     CrossRef
  • 7 View
  • 0 Download
  • Crossref