In this study, we developed and evaluated a simple device for removing ionic impurities that affect the performance of a polymer electrolyte membrane fuel cell (PEMFC) in a marine environment. In such environments, PEMFCs may experience performance degradation due to the presence of Na+ and Cl- in the air. To address this issue, the decontamination device was designed with both heating and cooling components. This device was positioned between a humidifier containing NaCl solution and a humidifier containing deionized water, both connected on the cathode side. The decontamination device effectively removed impurities (Na+ and Cl-) during experiments. As a result, the electrochemical performance of the fuel cell with the decontamination device improved compared to that of the fuel cell without it. Notably, the activation resistance and electrochemical surface area were significantly enhanced, and the ohmic resistance also improved when compared to the fuel cell without the decontamination device.
Citations
Citations to this article as recorded by
Effects of NaCl Solution on Proton Exchange Membrane Fuel Cell with Serpentine Flow Channel of Different Depths Dong Kun Song, Ho Jun Yoo, Jung Soo Kim, Ki Won Hong, Do Young Jung, George Ilhwan Park, Gu Young Cho Journal of the Korean Society for Precision Engineering.2025; 42(5): 399. CrossRef
In this study, the effects of repetition of assembly and disassembly of polymer electrolyte membrane fuel cells on electrochemical performance were systematically investigated. Additionally, the effects of additional activation on polymer electrolyte membrane fuel cells were evaluated. All fuel cells were measured every three days. For the disassembled polymer electrolyte membrane fuel cells, membrane electrode assemblies were stored in a vacuum desiccator. For the maintained assembly, fuel cells were stored at room temperature. The performance and electrochemical characteristics of the fuel cell were analyzed by electrochemical impedance spectroscopy. As a result, the addition of activation to maintained assembly fuel cells showed the best performance among fuel cells with other assembly and activation conditions. Repetition of assembly and disassembly, as well as insufficient activation, caused degradation of the performance of fuel cells.
Polymer electrolyte membrane fuel cells (PEMFC) require activation to maximize their performance. Thus, an appropriate activation process is essential for the performance of the fuel cell. In this study, the performance of the fuel cell was investigated by changing the voltage range during the activation process. There were three voltage ranges: 0.3-0.9 V, 0.3-0.6 V, and 0.6-0.9 V. When the fuel cell was activated in the low voltage region, the highest performance was output. On the other hand, it showed the lowest performance at high voltage. The results suggest that it is advantageous to activate the fuel cell with a high current. On the other hand, if activation is performed while outputting at a low current, the generation of water and the electrochemical reaction are insufficient, resulting in a load on the fuel cell. Through this experiment, it was confirmed that the control method greatly affects fuel cell performance when activated.
In this study, the electrochemical characteristics of fuel cell were evaluated after applying a compressive load to the activation area of membrane electrode assembly (MEA) in polymer electrolyte membrane fuel cells. The effects of the pressed area under the compressive load were systematically investigated using polarization curves and electrochemical impedance spectroscopies (EIS) of the fuel cell. Interestingly, the performance of the fuel cell was improved as the pressed area of the MEA was increased from 25.2% to 100% of the active area. In addition, the increased pressed area led to a decrease in the ohmic resistance and the activation resistance of fuel cells.