Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"막 전극 접합체"

Article category

Keywords

Publication year

Authors

"막 전극 접합체"

REGULAR

Electrochemical Impedance Analyses of ePTFE-reinforced Polymer Electrolyte Membrane-based PEMFC with Varying Thickness and Relative Humidity
Gyutae Park, Subin Jeong, Youngjae Cho, Junseo Youn, Jiwon Baek, Jooyoung Lim, Dongjin Kim, Taehyun Park
J. Korean Soc. Precis. Eng. 2025;42(11):901-907.
Published online November 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.052

The polymer electrolyte membrane fuel cell (PEMFC) generates electrical energy through electrochemical reactions and is a key technology for sustainable energy. The electrolyte membrane significantly affects performance under varying conditions. This study examines the impact of membrane thickness and relative humidity (RH) on PEMFC performance using j-V curves and electrochemical impedance spectroscopy (EIS). Experiments were conducted with membrane thicknesses of 30, 15, and 5 μm under RH conditions of 100%-100% and 100%-0%. Under RH 100%-100%, performance improved as the membrane thickness decreased, with values of 954, 1050, and 1235 mW/cm² for the 30, 15, and 5 μm membranes, respectively. The 5 μm membrane demonstrated a 23% performance improvement over the 30 μm membrane. Under RH 100%-0%, performances were 422, 642, and 852 mW/cm², with degradation rates of 55.8%, 39.0%, and 32.1%. The 5 μm membrane exhibited the lowest degradation rate, indicating superior performance under low humidity. These results suggest that thinner membranes generally enhance performance and maintain efficiency even in dry conditions.

  • 17 View
  • 1 Download
Article
A Study on Electrochemical Resistance Change through the Pressurization Process of MEA for PEMFC
Ye Rim Kwon, Dong Kun Song, Ho Jun Yoo, Gye Eun Jang, Young Jo Lee, Jung Soo Kim, Ji Woong Jeon, Da hae Guem, Gu Young Cho
J. Korean Soc. Precis. Eng. 2023;40(7):539-544.
Published online July 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.150
In this study, the electrochemical characteristics of fuel cell were evaluated after applying a compressive load to the activation area of membrane electrode assembly (MEA) in polymer electrolyte membrane fuel cells. The effects of the pressed area under the compressive load were systematically investigated using polarization curves and electrochemical impedance spectroscopies (EIS) of the fuel cell. Interestingly, the performance of the fuel cell was improved as the pressed area of the MEA was increased from 25.2% to 100% of the active area. In addition, the increased pressed area led to a decrease in the ohmic resistance and the activation resistance of fuel cells.
  • 5 View
  • 0 Download