Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

11
results for

"전산유체역학"

Article category

Keywords

Publication year

Authors

"전산유체역학"

REGULARs

A Study on Numerical Thermal Design Techniques for High-power Propulsion Motors
Jaehun Choi, Chiwon Park, Heesung Park
J. Korean Soc. Precis. Eng. 2025;42(11):893-900.
Published online November 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.036

Propulsion motors are vital components in marine propulsion systems and industrial machinery, where high torque and operational reliability are paramount. During operation, high-power propulsion motors generate considerable heat, which can adversely affect efficiency, durability, and stability. Therefore, an effective thermal management system is necessary to maintain optimal performance and ensure long-term reliability. Cooling technologies, such as water jackets, are commonly employed to regulate temperature distribution, prevent localized overheating, and preserve insulation integrity under high-power conditions. This paper examines the cooling performance of water jackets for high-power propulsion motors through numerical analysis. We evaluated the effects of three different cooling pipe locations and varying coolant flow rates on thermal balance and cooling efficiency. Additionally, we analyzed temperature variations in the windings and key heat-generating components to determine if a specific cooling flow rate and pipe configuration can effectively keep the winding insulation (Class H) within its 180oC limit. The findings of this study highlight the significance of optimized cooling system design and contribute to the development of efficient thermal management technologies, ultimately enhancing motor reliability, operational stability, and energy efficiency.

  • 19 View
  • 1 Download
Aerodynamic Flow Characteristics Inducing Centrifugal Compressor Noise Generation in High-speed Turbomachinery
Jihun Song, Chang Ho Son, Dong-Ryul Lee
J. Korean Soc. Precis. Eng. 2025;42(9):763-770.
Published online September 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.088

Centrifugal compressor is a device that converts kinetic energy to increase the air pressure. It rotates at a high speed of up to 200,000 RPM and directly affects aerodynamic noise. Various studies have already been conducted, but the direct calculation method of acoustics based on the unsteady solution is inefficient because it requires a lot of resources and time. Therefore, flow characteristics and numerical comparison according to various aerodynamic factors predicted as a cause of noise generation were analyzed in this study based on the steady solution. High-frequency noise was calculated locally near the asymmetric flow properties. Vortex and turbulent kinetic energy were generated at similar locations. Among static components, a large-sized vortex of 3.48×107 s-1 was distributed at the location where the rotational flow around the compressor wheel combined with the inlet suction flow. In addition, a locally high vortex of 8.16×105 s-1 was distributed around the balancing cutting configurations that cause asymmetric flow characteristics. Analysis of these factors and causes that directly affect noise can be efficiently improved in the pre-design stage. Therefore, the efficient design methodology for centrifugal compressors that considers both performance and noise is expected based on the results of this study.

  • 16 View
  • 0 Download
Articles
Improvement of Nozzle Tip Performance for Noncontact Medical Ultrasonic Mist Spraying
Seung Hyeok Jung, Jong Hyeok Jeon, Ji Young Won, Sung Min Kim, Hong Seok Lim
J. Korean Soc. Precis. Eng. 2024;41(6):489-496.
Published online June 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.042
Chronic wounds necessitate periodic treatment and management due to their potential for serious complications. Recently, ultrasonic mist therapy has been introduced to treat chronic wounds efficiently. This therapy requires a noncontact spraying method to prevent side effects such as bacterial infections and pain. Therefore, research is needed on a spray nozzle tip that can effectively transmit ultrasonic energy to the wound target with misted cleaning solution mobility in a specific direction and at an appropriate speed. The performance of the nozzle tip is greatly affected by the flow characteristics inside it. Computational fluid dynamics (CFD) is a powerful tool to analyze these characteristics in detail. The behavior of the mist was analyzed in a simulation based on discrete phase model methodology in an unsteady state. Valid design parameters enabling noncontact cleaning were determined by setting the design parameters of the nozzle tip`s internal flow path and measuring the spraying speed of the mist using CFD analysis. Through the simulation results, information on the sprayed skin surface and spray characteristics are measured. Lastly, we present a nozzle tip design guide optimized for ultrasonic mist therapy.
  • 6 View
  • 0 Download
A Study on the Smart Design and Cooling Performance of Electric Vehicle Motor Using Metal-Hybrid Materials
Sung-Hwan Bang, Dong-Ryul Lee
J. Korean Soc. Precis. Eng. 2021;38(8):595-603.
Published online August 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.039
The aim of this study is to numerically investigate the cooling performance of the electric vehicle motor depending on the attachment of the heat sink and materials to the cooling channel. The research focused on the numerical comparison of forced convective heat transfer coefficients with case 1 (Heat Sink-None, Cooling Channel-Al), case 2 (Heat Sink-None, Cooling Channel-Metal Hybrid Material), case 3 (Heat Sink-4EA, Cooling Channel-Al), and case 4 (Heat Sink-6EA, Cooling Channel-Al). To compare the cooling performance for novel design of the smart cooling system, selected local positions for various temperature distributions were marked on the coil surface. Normalized local Nusselt number of the cooling area at the normalized width position indicated that cooling performance of case 1 was on an average 8.05, 0.57, and 5.85% lower than that of cases 2, 3, and 4, respectively.

Citations

Citations to this article as recorded by  Crossref logo
  • Vehicle-motion-based Front Wheel Steer Angle Estimation for Steer-by-Wire System Fault Tolerance
    Seungyong Choi, Wanki Cho, Seung-Han You
    Journal of the Korean Society for Precision Engineering.2024; 41(5): 347.     CrossRef
  • 9 View
  • 0 Download
  • Crossref
CFD Analysis of the Mechanical Power and the Wake of a Scaled Wind Turbine and Its Experimental Validation
Yechan Hwang, Insu Paek
J. Korean Soc. Precis. Eng. 2021;38(3):223-233.
Published online March 1, 2021
DOI: https://doi.org/10.7736/JKSPE.020.113
In this study, both mechanical power and the wind speed distribution in the wake of a wind turbine scaled model were analyzed using a commercial CFD program (Ansys CFX) along with experimental validation. For the simulation, two different turbulence models including the SST model and the k-ε model were used. The scaled model was originally designed and manufactured by the researchers at the Technical University of Munich and was slightly modified for this research. To experimentally verify the CFD results, tests were performed with the scaled model under the turbulent wind in a wind tunnel. From the experimental validation, it was found that the k-ε turbulence model gives a better prediction than the SST model in the wake results. However, the SST turbulence model showed better prediction than the k-ε turbulence model in the power prediction. The discrepancy between the CFD results and the experimental validation is partially due to the fact that the blades are deformed at all times and control of pitch in the rated power region but these aspects are not considered in the simulation. If a transient analysis is performed using LES models, it will more accurately predict the change of wake with high turbulence intensity.

Citations

Citations to this article as recorded by  Crossref logo
  • Design and Performance Analysis for 3 MW Waste Pressure Steam Turbine Using 2D and 3D Numerical Simulation
    Hwabhin Kwon, Jong Yun Jung, Joon Seob Kim, Ye Lim Jung, Heesung Park
    Journal of the Korean Society for Precision Engineering.2021; 38(6): 455.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
A Study on Flow Characteristics and Cooling Performance for Different Turbine Blade Shapes
Chan Woo Park, Dong-Ryul Lee
J. Korean Soc. Precis. Eng. 2019;36(11):1043-1049.
Published online November 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.11.1043
The purpose of this study was to investigate the flow characteristics and cooling performance for the heavy turbine blade with different shapes. Research was focused on the numerical study on forced convective heat transfer coefficients for three different blades with base, tip, and hole. Thus, selected local locations for various temperature distributions were shown in the flow domain. Final temperature on the local surface of blades was compared with three different blades. According to the results of velocity and temperature distributions in the fluid domain, the blade with holes had the best convective cooling performance with higher 13-16% average heat transfer coefficient than the other two blades. Apparent vortex at the tip of tip and hole blade caused the stable temperature drop. According to the calculations of local convective heat transfer coefficient between blade surface and atmosphere in the blade, approximately 18% of heat transfer coefficient at hole was higher than the base blade and 7% at hole blade was higher than the base blade. Lowest cooling performance existed at the center position of all three blades.
  • 6 View
  • 0 Download
Analysis of Temperature Variation by Structural Arrangement of Internal Heat Sources in Radar Shelters
Seongyong Kim, Changwoo Lee
J. Korean Soc. Precis. Eng. 2019;36(2):115-119.
Published online February 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.2.115
In modern society, industries are being upgraded in various fields. In particular, the defense industry has developed numerous technologies, such as the localization of core military technologies. The defense industry is actively studying technologies in areas such as in helicopters and tanks. In the case of radars, research on the radar itself is very active as is the research on the components that make up the radar. In this study, the temperature distribution of the two types of evacuation centers that make up the radar were analyzed using Computer Fluid Dynamics (CFD) to identify the temperature distribution based on the internal structure of the shelter. The two types of shelters have different heating values in different arrangements in the shelter provided they have the same size of heat source. Simulation results showed that the average temperature at the KA LNA shelter was different. In this study, we analyzed the effects of internal structure on the temperature and confirmed that the internal temperature may be decreased by changing the structure without using an external cooling element.
  • 4 View
  • 0 Download
A Study on the Convective Cooling Performance of the Secondary Battery in Electric Vehicle
Dong-Ryul Lee
J. Korean Soc. Precis. Eng. 2018;35(12):1157-1162.
Published online December 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.12.1157
This study is to investigate convection cooling performance of the Secondary Battery of Electric Vehicle without heat sink. Research is focused on the comparative study on cooling between forced convection and natural convection cooling. Selected local locations for various temperature distributions had shown in the flow domain. Final temperature on the cell surface has been compared by forced convection with natural convection. According to the results of velocity and temperature distributions in the fluid domain, Buoyancy appear by density difference in the natural convection. Apparent vortex was detected in the fluid domain for forced convection. According to calculations of convective heat transfer coefficient between cell and atmosphere in the battery pack, average value of more 70-78% heat transfer coefficient increased by forced convection than natural convection. Average temperature value of the cell surface decreased up to 46.50% by forced convection. Due to vortex by air, cooling performance of forced convection is excellent. In addition, cooling on edge of the battery is better than heat source location.

Citations

Citations to this article as recorded by  Crossref logo
  • A Study on Heat Radiation Performance for Different Layout of Electric Vehicle Secondary Battery Cell
    Seung Bong Hyun, Byeong Yeop Kim, Ji Hun Song, Dong-Ryul Lee
    Journal of the Korean Society for Precision Engineering.2020; 37(4): 271.     CrossRef
  • 7 View
  • 0 Download
  • Crossref
Performance Estimation of Adjustable Wall Blower according to the Entering Distance of Nozzle
Ilkwang Jang, Jae Ho Paek, Yong Hoon Jang
J. Korean Soc. Precis. Eng. 2018;35(5):531-536.
Published online May 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.5.531
The soot blowing performance for a wall blower, according to the entering distance of a nozzle from the boiler wall, is evaluated according to a liquid droplet impingement erosion model. This erosion model incorporated the computational fluid dynamics of a jet steam of nozzle, and it uses the pressure and velocity of a jet steam at the furnace wall for several entering distances of the nozzle. A relative erosion rate dependent on the velocity of the jet steam is also introduced. Several cases are compared, as determined according to the entering distance and the number of nozzles. The shaded erosion region, according to the entering distance of the nozzle and the co-injected region, have also been schematized. Specifically, when the entering distance of the nozzle is large, the maximum relative erosion rate is small. However, the soot blowing area is uniformly large, as compared with the case of a small entering distance. This shows that the maximum relative erosion rate is high, but the soot blowing region is small and the shaded regions occur.
  • 4 View
  • 0 Download
A Computational Fluid Dynamics Analysis on Mist Behaviors in Nanofluid Minimum Quantity Lubrication Milling Process
Young Chang Kim, Jin Woo Kim, Jung Sub Kim, Sang Won Lee
J. Korean Soc. Precis. Eng. 2017;34(5):301-306.
Published online May 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.5.301
This paper discusses flow characteristics of nanofluid minimum quantity lubrication (MQL) in the milling process of a titanium alloy by usingnumerical analysis. A mist of nanofluids including nanodiamond and hexagonal boron nitride (hBN) particles is sprayed into a tool-workpiece interface with conditions varying by spray angle and flow rate. The milling. Are experimentally measured and minimized by the determined optimal spray angle and flow rate. The subsequent numerical analysis based on a computational fluid dynamics (CFD) approach is conducted to calculate the penetration ratios of the nanofluid droplets into a tool. At the experimentally obtained optimal spray angle and flow rate of the nanofluids’ mist, the calculated ratio of penetration is highest and, therefore, the optimal spray conditions of the nanofluids are numerically validated.
  • 4 View
  • 0 Download
Simulation Study on the Design of Air Brake Valve for Automobile Applications
Dong Woo Lee, Min-Seung Jun, Jung Il Song
J. Korean Soc. Precis. Eng. 2017;34(2):145-150.
Published online February 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.2.145
Air brake valves are widely used in automotive braking systems and the Korean automobile industry depends on importing them. Therefore, we should develop the technical expertise for their domestic production. In this study, air brake valves were analyzed that can be used in a variety of automobiles. Computational fluid dynamics analysis, static structural analysis, and hyper-elastic analysis were carried out. Before production of an air brake valve system, the performance of different parts has to be evaluated, for instance by using finite element analysis. The structural stability of the product can be determined using static dynamics. The compression behavior of the O-ring is predictable by nonlinear hyper elastic analysis, although errors are possible due to one-way loading. This simulation study can both save time and reduce costs compared to the development of experimental prototypes.
  • 5 View
  • 0 Download