This study numerically investigates the spreading and retracting dynamics of Janus drops on the inner surfaces of cylinders using the Volume of Fluid method. The results indicate that increasing surface curvature enhances spreading in the axial direction and promotes the detachment of the low-viscosity water component, particularly under conditions of high viscosity ratio and Weber number. A regime map is constructed to identify the critical conditions for separation, revealing that surfaces with intermediate curvature exhibit higher separation efficiency compared to those with high curvature. The temporal evolution of axial momenta in the x and z directions highlights the role of viscosity contrast in inducing asymmetric deformation. A scaling law for residence time is proposed as a function of Weber number, which aligns well with simulation results in the high Weber number regime. These findings provide fundamental insights for optimizing surface curvature and fluid composition to enhance drop separation and may benefit applications such as selective liquid extraction, surface cleaning, and microfluidic manipulation.
Condensation is an important research topic that ensures increased energy efficiency. Our researchers aimed to optimize heat transfer in industrial heat exchanger tubes through surface modification. We first succeeded in fabricating superhydrophilic and superhydrophobic tubes using surface modification. We observed the condensation phenomenon on the outside of the tube and evaluated the heat transfer performance through a condensation experimental facility. As a result, we found that the condensation heat transfer efficiency of superhydrophobic tubes is superior to that of conventional tubes. However, the heat transfer efficiency of the superhydrophobic tube reduced with an increase in saturation. To improve performance degradation, superhydrophilic and superhydrophobic hybrid tubes were fabricated and evaluated for their potential to improve heat transfer efficiency. As a result, we found that the liquid film generated by filmwise condensation on the superhydrophilic surface swept past the residual droplets generated by dropwise condensation on the superhydrophobic surface, resulting in the best heat transfer performance. Our results break the stereotypes of previous studies and provide a new paradigm for achieving optimal heat transfer performance on large-area curved surfaces. This research is expected to be widely applied in a variety of industries where energy efficiency is critical.
In a pilot natural super-hydrophobic surfaces study, a super-hydrophobic surface was made by coating, etching, laser ablation, chemical vapor deposition and lithography. In this study, cone-shaped periodic micro and nano-structures were constructed on a silica surface with femtosecond and picosecond laser, and the period of micro-structures between cone shape patterns was increased with 10 μm intervals. The contact angle and image of the super-hydrophobic surface were analysed and the cone (Aspect-ratio 1.27) shape model with micro-protrusion structure similar to the surface of the lotus leaf was made to measure the contact angle. To analyse the differences in the contact angles between the cone shapes and heights of the micro-protrusion, different samples with cone (Aspect-ratio 1.27), sphere (Aspect-ratio 1.00) shapes were made through laser micro-machining technology. To mimick the natural lotus leaves, the optimum condition was a cone shape. Samples of PDMS with different shapes and mixed micro/nano-structures were fabricated with a PDMS mold insert. The largest contact angle was measured at 170.42° which is similar to the contact angle of the lotus leaf. This mold insert could be used repeatedly. The molding process is advantageous for large areas and mass production.
Citations
Citations to this article as recorded by
Study on Micro Grooving of Tungsten Carbide Using Disk Tool Min Ki Kim, Chan Young Yang, Dae Bo Sim, Ji Hyo Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2024; 41(2): 123. CrossRef
In this paper, we present a simple and robust fabrication method for mushroom-shaped microstructures using diverse polymers with various modulus of elasticity. Through the repeated replica molding process, we fabricated the same PDMS mushroom structure negative mold as the prepared silicon master mold. To evaluate the fabricating stability of the fabricated PDMS negative mold, the mushroom-shaped structures were replicated from the mold using six types of polymer resins with different elastic modulus and we measured superhydrophobic properties on the samples. All the fabricated samples exhibited superhydrophobicity, and we proved the structural stability of the proposed replication method through the measured SEM images, contact angles on the samples, and theoretical analysis based on the structural shape.
Citations
Citations to this article as recorded by
Mastering of NIL Stamps with Undercut T-Shaped Features from Single Layer to Multilayer Stamps Philipp Taus, Adrian Prinz, Heinz D. Wanzenboeck, Patrick Schuller, Anton Tsenov, Markus Schinnerl, Mostafa M. Shawrav, Michael Haslinger, Michael Muehlberger Nanomaterials.2021; 11(4): 956. CrossRef