Commercial exoskeletons currently utilize multiple sensors, including inertial measurement units, electromyography sensors, and torque/force sensors, to detect human motion. While these sensors improve motion recognition by leveraging their unique strengths, they can also lead to discomfort due to direct skin contact, added weight, and complex wiring. In this paper, we propose a simplified motion recognition method that relies solely on encoders embedded in the motors. Our approach aims to accurately classify various movements by learning their distinctive features through a deep learning model. Specifically, we employ a convolutional neural network algorithm optimized for motion classification. Experimental results show that our model can effectively differentiate between movements such as standing, lifting, level walking, and inclined walking, achieving a test accuracy of 98.76%. Additionally, by implementing a sliding window maximum algorithm that tracks three consecutive classifications, we achieved a real-time motion recognition accuracy of 97.48% with a response time of 0.25 seconds. This approach provides a cost-effective and simplified solution for lower limb motion recognition, with potential applications in rehabilitation-focused exoskeletons.
CNN is one of the deep learning technologies useful for image-based pattern recognition and classification. For machining processes, this technique can be used to predict machining parameters and surface roughness. In electrical discharge machining (EDM), the machined surface is covered with many craters, the shape of which depends on the workpiece material and pulse parameters. In this study, CNN was applied to predict EDM parameters including capacitor, workpiece material, and surface roughness. After machining three metals (brass, stainless steel, and cemented carbide) with different discharge energies, images of machined surfaces were collected using a scanning electron microscope (SEM) and a digital microscope. Surface roughness of each surface was then measured. The CNN model was used to predict machining parameters and surface roughness.
In the semiconductor manufacturing industry, efficient operation of wafer transfer robots has a direct impact on productivity and product quality. Ball screw misalignment anomalies are a critical factor affecting precision transport of robots. Early diagnosis of these anomalies is essential to maintaining system efficiency. This study proposed a method to effectively diagnose ball screw misalignment anomalies using 1D-CNN and 2D-CNN models. This method mainly uses binary classification to distinguish between normal and abnormal states. Additionally, explainable artificial intelligence (XAI) technology was applied to interpret diagnostic decisions of the two deep learning models, allowing users to convince prediction results of the AI model. This study was based on data collected through acceleration sensors and torque sensors. It compared accuracies of 1D-CNN and 2D-CNN models. It presents a method to explain the model"s predictions through XAI. Experimental results showed that the proposed method could diagnose ball screw misalignment anomalies with high accuracy. This is expected to contribute to the establishment of reliable abnormality diagnosis and preventive maintenance strategies in industrial sites.
Elderly monitoring systems are gaining significant attention in our increasingly aging society. Existing monitoring systems, which utilize RGB and infrared cameras, often encounter errors when recognizing human-like objects, photos, and videos as actual humans. Additionally, privacy concerns arise due to this issue. However, these challenges can potentially be overcome by employing thermal images. Thus, our study aimed to investigate the feasibility of identifying and categorizing human postures depicted in thermal images using deep learning models and algorithms. To conduct our experiment, we developed a system that utilizes a thermal pose algorithm and a convolutional neural network. As a result, we achieved an average accuracy of 88.3%, with the highest accuracy reaching 91.2%.
Brain-computer interface (BCI) is a technology used in various fields to analyze electroencephalography (EEG) signals to recognize an individual"s intention or state and control a computer or machine. However, most of the research on BCI is on motor imagery, and research on active movement is concentrated on upper limb movement. In the case of lower limb movement, most of the research is on the static state or single movements. Therefore, in this research, we developed a deep-learning model for classifying walking behavior(1: walking, 2: upstairs, 3: downstairs) based on EEG signals in a dynamic environment to verify the possibility of classifying EEG signals in a dynamic state. We developed a model that combined a convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM). The model obtained an average recognition performance of 82.01%, with an average accuracy of 93.77% for walking, 76.52% for upstairs, and 75.75% for downstairs. It is anticipated that various robotic devices aimed at assisting people with disabilities and the elderly could be designed in the future with multiple features, such as human-robot interaction, object manipulation, and path-planning utilizing BCI for control.
In this study, we proposed an AI-algorithm for face mask recognition based on the MobileNetV2 network to implement automatic door control in intensive care units. The proposed network was constructed using four bottleneck blocks, incorporating depth-wise separable convolution with channel expansion/projection to minimize computational costs. The performance of the proposed network was compared with other networks trained with an identical dataset. Our network demonstrated higher accuracy than other networks. It also had less trainable total parameters. Additionally, we employed the CVzone-based machine learning model to automatically detect face location. The neural network for mask recognition and the face detection model were integrated into a system for real-time door control using Arduino. Consequently, the proposed algorithm could automatically verify the wearing of masks upon entry to intensive care units, thereby preventing respiratory disease infections among patients and medical staff. The low computational cost and high accuracy of the proposed algorithm also provide excellent performance for real-time mask recognition in actual environments.
As the size of semiconductor devices gradually decreases, it is important to measure and analyze semiconductor devices, to improve the image quality of semiconductors. We use VDSR, one of the Super-Resolution methods to improve the quality of semiconductor devices’ SEM images. VDSR is also a convolutional neural network that can be optimized with various parameters. In this study, a VDSR model for semiconductor devices’ SEM images was optimized using parameters such as depth of layers and amount of training data. Meanwhile, the quantitative evaluation and the qualitative evaluation did not match at the low scale factor. To solve this problem, we proposed an MTF measurement method using the slanted edge for better quantitative evaluation. This method was verified by comparing the results with the PSNR and SSIM index results, which are known as quality indicators. Based on the results, it was confirmed that using the MTF value could be a better approach for the evaluation of SEM images of the semiconductor device than using PSNR and SSIM.
Recently, interest in Prognostics and Health management (PHM) has been increasing as an advanced technology of maintenance. PHM technology is a technology that allows equipment to check its condition and predict failures in advance. To realize PHM technology, it is important to implement artificial intelligence technology that diagnoses failures based on data. Vibration data is often used to diagnose the state of the rotating machine. Additionally, there have been many efforts to convert vibration data into 2D images to apply a convolutional neural network (CNN), which is emerging as a powerful algorithm in the image processing field, to vibration data. In this study, a series of PHM processes for acquiring data from a rotary machine and using it to check the condition of the machine were applied to the rotary table. Additionally, a study was conducted to introduce and compare two methodologies for converting vibration data into 2D images. Finally, a GUI program to implement the PHM process was developed.