Recently, carbon fiber-reinforced plastic (CFRP) has been attracting much attention in various industries because of its beneficial properties such as excellent strength, modulus per unit density, and anti-corrosion properties. However, there are several issues in its application to various fields. Severe tool wear issues in its machining have been noted as one of the most serious problems because it induces various serious machining failures such as delamination and splintering. In this regard, timely tool replacement is essential for reducing the influence of tool wear. In this study, tool wear, especially flank wear, in the CFRP drilling was investigated and monitored. First, the reproducibility of tool wear under the same machining condition was experimentally evaluated. And it is demonstrated that tool wear may remarkably differ even though the same machining condition is applied to the tools. Then, tool wear monitoring based on the feed motor torque was applied to the detection of tool life ending in the CFRP drilling process. Consequently, it was demonstrated that the average and maximum detection error of the tool life end were less than 7 and 14%, respectively.
Citations
Citations to this article as recorded by
Experimental research on multi-structural parameter optimization of rhombic tooth endmill based on DOE in CFRP milling Xiaochen Zuo, Junxue Ren, Tiejun Song, Tao Zeng, Mengliu Zhang, Hexuan Liu Journal of Materials Research and Technology.2025; 38: 2892. CrossRef
Laser Drilling of Micro-Hole Array on CFRP Using Nanosecond Pulsed Fiber Laser Do Kwan Chung Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(5): 92. CrossRef
Laser EDM Hybrid Micro Machining of CFRP Do Kwan Chung, Chan Ho Han, Yu Jin Choi, Jun Seo Park Journal of the Korean Society for Precision Engineering.2023; 40(2): 99. CrossRef
Comparison of TiAlN DLC and PCD Tool Wear in CFRP Drilling Jong-Hyun Baek, Su-Jin Kim Journal of the Korean Society of Manufacturing Process Engineers.2022; 21(5): 77. CrossRef
The demand for inspection of high-speed systems for machined Carbon Fiber Reinforced Plastics parts for automobileindustry and aviation industry is constantly rising. One of the factors that degrade the performance of an inspection system is micro-vibration from the ground or structure where is placed. Various isolation systems that suppress the vibration have been studied classified as either passive or active system. The passive system is composed of a spring and a damper while the active system suppresses the vibration through an electronic control system using sensors and actuators. In this study, a voice coil motor (force constant 55N/A) acting as the actuator is optimally designed using permeance method and sequential quadratic programming algorithm to suppress the vibration and reaction force by a specimen moving stage. The two optimized voice coil motors are attached to a pneumatic mount that has an advantage in design based on the force and size constraints required by the user for an active vibration isolator with velocity sensors (GS-11d). The active vibration isolation system with the four active vibration isolators -23 dB and -20 dB at resonance frequencies in horizontal and vertical transmissibility performs better than a passive vibration isolation system.
Citations
Citations to this article as recorded by
An Active Geophone Sensor with Optimized State Variable Filter for Measuring Low-Band Frequencies Jinsoo Choi, Hongki Yoo, Eunjong Choi, Kihyun Kim, Hyo-Young Kim International Journal of Precision Engineering and Manufacturing.2024; 25(5): 981. CrossRef
Effect of inertia variations for active vibration isolation systems Jinsoo Choi, Kihyun Kim, Hyoyoung Kim, SeokWoo Lee Precision Engineering.2020; 66: 507. CrossRef
Transportation industries, such as aerospace and automotive demand high efficiency using lightweight parts. Carbon Fiber Reinforced Plastics (CFRP) present promising materials for transportation industry parts due to their lightweight and highstrength properties. Forming and machining processes are required to manufacture parts from carbon fiber composite materials. The near-net shaping process forms the parts, and the final accurate shape and hole are accomplished using the machining process. However, high-strength carbon fiber chips and dust from the machining process cause cutting tool wear and low productivity. The hybrid CRD (Cutting, Routing and Drilling)/water-jet machine improves tool life and productivity because its water-jet process, employed before the mechanical machining process cuts roughly without chips and dust. In this study, the hybrid CRD/water-jet machine we developed was introduced and its machining performance was evaluated using a drilling process. The delamination factor and surface roughness of drilled holes were compared with the results from a conventional machine tool.
Citations
Citations to this article as recorded by
Effect of Vacuum Suction on Dust and Exit Burr Removal in FRP Drilling Jong-Hyun Baek, Su-Jin Kim Journal of the Korean Society of Manufacturing Process Engineers.2022; 21(11): 29. CrossRef
Multistep Workpiece Localization with Automated Symmetry Identification for Aerospace Carbon Fiber Reinforced Plastic Components Minh Duc Do, Mingeon Kim, Duy Hung Nguyen, Soonyoung Han, Van Huan Pham, Hae-Jin Choi International Journal of Precision Engineering and Manufacturing-Green Technology.2022; 9(4): 1133. CrossRef
Drill bit with clip-edges based on the force control model for reducing the CFRP damage Jiaxuan Hao, Fuji Wang, Meng Zhao, Yu Bai, Zhenyuan Jia Journal of Reinforced Plastics and Composites.2021; 40(5-6): 206. CrossRef
Lightweight parts are necessary to improve fuel efficiency and reduce environmental impacts in transportation industry. As a result, there has been a shift away from using conventional metals toward using lighter materials with superior mechanical strength. These new materials typically include titanium alloys, nickel alloys, carbon fiber reinforced plastics (CFRPs), and CFRP-metal stacks, which are classified as advanced materials. However, due to the unique properties of these materials (e.g., high strength, low thermal conductivity, carbon fiber-induced hardness, etc.), the cutting process can be difficult. As a result, various manufacturing issues can occur during the cutting process, such as high tool wear, surface quality deterioration, delamination of the CFRP layer, fiber pull-out, and thermal deformation. In this paper, difficult-to-cut advanced materials were reviewed with regard to the influence of the physical properties of the materials and various defect issues that can occur during the mechanical cutting process. In addition, various approaches to improve the cutting process are introduced, including protecting tools with coatings, altering tool features, using high pressure or cryogenic cooling, extending tool life via ultrasonic vibration machining, and improving product quality and machinability.
Citations
Citations to this article as recorded by
Laser Drilling of Micro-Hole Array on CFRP Using Nanosecond Pulsed Fiber Laser Do Kwan Chung Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(5): 92. CrossRef
Abrasive belt grinding force and its influence on surface integrity Yun Huang, Gang Liu, Guijian Xiao, Jiayu Xu Materials and Manufacturing Processes.2023; 38(7): 888. CrossRef
Laser EDM Hybrid Micro Machining of CFRP Do Kwan Chung, Chan Ho Han, Yu Jin Choi, Jun Seo Park Journal of the Korean Society for Precision Engineering.2023; 40(2): 99. CrossRef
Ultrasonic Unit Design for Drilling An Mok Jeong Journal of the Korean Society of Manufacturing Technology Engineers.2022; 31(6): 409. CrossRef
A study on the process efficiency of laser-assisted machining investigating energy consumption Won-Jung Oh, Choon-Man Lee The International Journal of Advanced Manufacturing Technology.2021; 113(3-4): 867. CrossRef
Development of adhesion force evaluation equipment for nano diamond coated tool using shear method Jinghua Li, SoJin Lee, HyunKyu Kweon Measurement and Control.2021; 54(1-2): 3. CrossRef
Cutting Characteristics and Deformation Analysis for Chord and Side Fitting Parts in an Aircraft Bulkhead Do Hyeog Kim, Yoon Gyo Jung, Yong-Seon Mo, Young Tae Cho Journal of the Korean Society of Manufacturing Technology Engineers.2020; 29(1): 74. CrossRef
Micro Machining of CFRP Using Nanosecond Pulsed Fiber Laser Do Kwan Chung, Jin Sung Park, Ki Hun Kim Journal of the Korean Society for Precision Engineering.2019; 36(9): 783. CrossRef
Tool wear is an essential parameter in determining tool life, machining quality and productivity. Current or power signals from motor drivers in machine have been used to estimate tool wear. However, accuracy of tool wear estimation was not enough to measure the amount of tool wear. In this study, flank wear of a drill tool was measured using vision sensor module which has zoom lens, CCD camera and image processing technique. The vision module was set up in the machine tool. Therefore, the image was acquired without ejecting the tool from the machine. Image processing techniques were used to define the cutting edge shape, tool diameter, and the wear edge on cutting rips with the proposed measuring algorithm. The automatically calculated wear value was compared with a manually measured value. As a result, the difference between the manual and the automatic methods was below 4.7%. The proposed method has an advantage to decrease the measuring time and improve measuring repeatability because the tool is measured holding chuck in a spindle.
Carbon Fiber Reinforced Plastics (CFRP) is an encouraging material for aerospace and automotive industries due to its light weight and high strength. Aerospace parts require precise dimensional tolerance and high machined surface quality for safety and reliability. Routing process is needed to produce satisfactory dimensional accuracy of CFRP parts. Machining defects of routing process are related to the cutting mode with respect to cutting angle and bonding strength between carbon fibers and polymer matrix. When the polymer matrix is transformed from polymer to amorphous state, bonding strength is declined. Therefore, cutting temperature is a critical parameter for CFRP machining process because glass transient temperature is relatively low. In this paper, cutting temperature was measured using thermal imaging camera. Machined surface roughness and maximum fiber pull-out depth were analyzed with respect to feed, spindle speed, and laminate structure.
Citations
Citations to this article as recorded by
A Study on the Improvement of Bonding Strength of Heterojunctions by Applying Laser Surface Treatment to Carbon Fiber Reinforced Plastics Huan Wang, Seong Cheol Woo, Chung-Ki Sim, Seong-Kyun Cheong, Joohan Kim Journal of the Korean Society for Precision Engineering.2022; 39(9): 683. CrossRef
Comparison Study on Side Milling of CFRP with AlCrN-based, Diamond-Like-Carbon(DLC), and Diamond-Coated End Mill Min-Woo Sa Journal of the Korean Society of Manufacturing Process Engineers.2020; 19(4): 9. CrossRef
Fabrication of Micro Tool Electrode by Micro EDM using Wear Ratio In Yong Moona, Do Kwan Chung, Bo Hyun Kim Journal of the Korean Society of Manufacturing Technology Engineers.2018; 27(1): 1. CrossRef
Titanium alloy has been widely used in the aerospace industry because of its high strength and good corrosion resistance. During cutting, the low thermal conductivity and high chemical reactivity of titanium generate a high cutting temperature and accelerates tool wear. To improve cutting tool life, cryogenic machining by using a liquid nitrogen (LN2) jet is suggested. In cryogenic jet cooling, evaporation of LN2 in the tank and transfer tube could cause pressure fluctuation and change the cooling rate. In this work, cooling uniformity is investigated in terms of liquid nitrogen jet pressure in cryogenic jet cooling during titanium alloy turning. Fluctuation of jet spraying pressure causes tool temperature to fluctuate. It is possible to suppress the fluctuation of the jet pressure and improve cooling by using a phase separator. Measuring tool temperature shows that consistent LN2 jet pressure improves cryogenic cooling uniformity.
Recently, concerns about the environment are becoming more important because of global warming and the exhaustion of earth’s resources. In the aviation and automobile industries, the application of light materials is increasingly important for eco-friendly and effective. Carbon Fiber Reinforced Plastics is a composite material which great formability and the high strength of carbon fiber. CFRP, which is both light and strong, is hard to manufacture. In addition, CFRP machining has a high chance of defects. This research discusses the development of a manufacturing system package for CFRP machining. It involving CFRP Drilling/Water-jet Manufacturing Machines, Inspection/Post-processing Systems, CNC platform for an EtherCAT servo Communication, Flexible Manufacturing Systems and CFRP machining Processes.
CFRP (Carbon Fiber Reinforced Plastic) and CFRP-metal stacks have recently been widely used in the aerospace and automobile industries. When CFRP is machined by a brittle fracture mechanism, defect generation behaviors are different from those associated with metal cutting. The machining quality is strongly dependent on the properties of CFRP materials. Therefore, process control for CFRP machining is necessary to minimize the defects of differently manufactured CFRPs. In this study, defects in drilling of CFRP substrates with a variety of fiber directions and resin types are compared with respect to thrust force. An experimental study on material interface detection is carried out to investigate its benefits in process control.
The cold hollow cathode gas ion source is under development for multi aperture focused ion beam (FIB) system. In this paper, we describe the cold hollow cathode ion source design and the general ion source performance using Ar gas. The glow discharge characteristics and the ion beam current density at various operation conditions are investigated. This ion source can generate maximum ion beam current density of approximately 120 ㎃/㎠ at ion beam potential of 10 kV. In order to effectively transport the energetic ions generated from the ion source to the multi-aperture focused ion beam(FIB) system, the einzel lens system for ion beam focusing is designed and evaluated. The ions ejected from the ion source can be forced to move near parallel to the beam axis by adjusting the potentials of the einzel lenses.
Recently, focused ion beam (FIB) applications have been investigated for the modification of VLSI circuit, the MEMS processing, and the localized ion doping. A multi aperture FIB system has been introduced as the demands of FIB applications for high speed and large area processing increase. A liquid metal ion source has problems, a large angular divergence and a metal contamination into a substrate. In this study, a gas ion source was introduced to replace a liquid metal ion source. The gas ion source generated inductively coupled plasma (ICP) in a quartz tube (diameter: 45 ㎜). Ar gas fed into the quartz was ionized by a 2 turned radio frequency antenna. The Ar ions were extracted by 2 extraction grids. The maximum extraction voltage was 10 ㎸. A numerical simulation was used to optimize the design of extraction grids and to predict an ion trajectory. As a result, the maximum ion current density was 38 ㎃/㎠ and the spread of ion energy was 1.6 % for the extraction voltage.
In focused ion beam (FIB) fabrication processes the ion beam intensity with Gaussian profile has a drawback for high resolution machining. In this paper, the fabrication method to modify the beam profile at substrate using silt mask is proposed to increase the machining resolution at high current. Slit mask is utilized to block the part of beam and transmit only high intensity portion. A nano manipulator is utilized to handle the silt mask. Geometrical analysis on fabricated profile through silt mask was conducted. By utilizing proposed method, improvement of machining resolution was achieved.