Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

5
results for

"고체산화물연료전지"

Article category

Keywords

Publication year

Authors

"고체산화물연료전지"

REGULARs

A Study on the Performance Enhancement of Solid Oxide Fuel Cells by Controlling the Infiltration Molar Concentration of PNO
Miju Ku, Jisung Yoon, Young-Beom Kim
J. Korean Soc. Precis. Eng. 2025;42(11):943-947.
Published online November 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.076

In this study, we employed an infiltration technique to create a nanostructured functional layer, enhancing the electrochemically active area in solid oxide fuel cells (SOFCs). We infiltrated Pr2NiO4+δ (PNO) into a porous GDC electrolyte, resulting in a nanostructured catalytic layer. We characterized its microstructure and cross-sectional morphology using field-emission scanning electron microscopy (FE-SEM). The electrochemical performance was assessed at 750°C with a NiO-YSZ/YSZ/GDC half-cell configuration. The reference cell without PNO infiltration achieved a maximum power density of 2.07 W/cm2, while the cell with 0.05 M PNO infiltration reached an improved value of 2.55 W/cm2. These results demonstrate that by optimizing the infiltration concentration of PNO, we can fabricate a high-performance nanostructured functional layer without adding extra thickness, confirming infiltration as an effective strategy for enhancing SOFC performance.

  • 11 View
  • 1 Download
Tape-casting Process Electrochemical Characteristic Test for Fabrication of LST-GDC for Anode Supported SOFCs
Min Ji Kim, Chunghyun Kim, Young-Beom Kim
J. Korean Soc. Precis. Eng. 2025;42(11):937-942.
Published online November 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.073

In this study, we developed a composite anode support composed of La-doped SrTiO3 (LST) and Gd-doped CeO2 (GDC) using a tape casting process for solid oxide fuel cells (SOFCs). By adjusting the pore former content in the slurry, we constructed a bilayered structure consisting of a porous anode support layer (ASL) and a dense anode functional layer (AFL) with the same material composition. The number of tape-cast sheets was controlled to tailor the overall thickness, and lamination followed by co-sintering at 1250oC resulted in a mechanically robust bilayer. We characterized the microstructural evolution concerning sintering temperature and pore former content using SEM, while XRD confirmed the phase stability of LST and GDC. The measured electrical conductivity at 750oC ensured sufficient electron transport. To enhance interfacial adhesion and suppress secondary phase formation, we introduced a GDC buffer layer and a pre-sintering treatment prior to electrolyte deposition. A full cell with a YSZ electrolyte and LSCF cathode achieved a stable open circuit voltage of approximately 0.7 V and demonstrated continuous operation at 750oC. These findings highlight the suitability of LST-GDC composite anodes as thermochemically stable supports, potentially enabling direct hydrocarbon utilization in intermediate-temperature SOFCs.

  • 14 View
  • 1 Download
Articles
Fabrication of LSC Cathode for High-performance Solid Oxide Fuel Cell with Suppressed LSC/YSZ Interface Side Reactions
Jisung Yoon, Miju Ku, Hyojun Ahn, Hunhun Jung, Young-Beom Kim
J. Korean Soc. Precis. Eng. 2025;42(5):361-366.
Published online May 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.008
In this study, we introduce a novel flash light sintering (FLS) method to address the issue of secondary phase formation in conventional high-temperature thermal sintering processes. The microstructure and cross section of the Lanthanum strontium cobalt (LSC) air electrode were analyzed using field emission scanning electron microscopy (FE-SEM). The presence of secondary phases was evaluated using X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) in SEM. Electrochemical performance was assessed using NiO-YSZ anode-supported LSC cathode cells at 750oC. The maximum power density of the thermally sintered LSC cathode at 900oC was 272.4 mW/cm², while the flash light sintered LSC cathode by 18.5 J/cm² achieved 2,222 mW/cm². These results demonstrate that the flash light sintering process can effectively prevent secondary phase formation and successfully sinter the electrode, thereby enhancing the performance and reliability of SOFCs.
  • 10 View
  • 0 Download
Performance Analysis according to Microstructure of Anode Function Layer based on Porous Metal Substrate for Solid Oxide Fuel Cells
Jisung Yoon, Young-Beom Kim
J. Korean Soc. Precis. Eng. 2024;41(10):777-781.
Published online October 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.002
In this study, to improve the performance of a solid oxide fuel cell based on a porous metal support, a fuel cell using a multi-layered anode functional layer was fabricated and electrochemical performance analysis was performed. Surface and cross-sectional microstructures according to particle size control were confirmed through FE-SEM. The pore size of the multi-layer anode functional layer was gradually reduced compared to that of a single-structure anode functional layer. As a result, it was confirmed that the surface roughness was lower than that of the single structure. This led to a reduction in polarization resistance through smooth transmission of gas generated from the electrode. As a result, it was confirmed that electrochemical performance was improved by more than 1.25 times in fuel cells using a multi-layered anode functional layer compared to that with a single structure.
  • 5 View
  • 0 Download
Experimental Analysis of Performance Variation on Thin Film Solid Oxide Fuel Cell with Different Cathode Area Sizes
Jong Dae Baek, Ikwhang Chang
J. Korean Soc. Precis. Eng. 2019;36(12):1183-1187.
Published online December 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.12.1183
To study the geometrical scale dependency of thin film solid oxide fuel cells (SOFCs), we fabricated three thin films SOFCs with the same cross-sectional structure but with different electrode areas of 1, 4 and 9 ㎟. Since the activation and ohmic losses of SOFCs depend on their active region, we examined the variations of the power density of the cells with a Pt (anode)/sputtered YSZ/Pt (cathode) structure. We found that a cathode electrode with a low aspect ratio may suffer from high ohmic and activation losses because of the geometrical scale dependency.
  • 7 View
  • 0 Download