This study examines how two key design parameters—the pre-stretch ratio and the thickness of the carbon nanotube (CNT) electrode—affect the actuation performance of dielectric elastomer actuators (DEAs). DEA samples are created with varying pre-stretch levels (50% and 125%) and different amounts of CNT spray coating (4 and 8 mg), and their threshold voltages and areal strains are quantitatively assessed. The experimental results indicate that higher pre-stretch ratios result in lower threshold voltages and greater areal deformations, while increased CNT thickness typically reduces actuator deformation due to enhanced mechanical stiffness. The combination of a high pre-stretch ratio and low CNT loading demonstrates improved electro-mechanical responsiveness at moderate voltages. These findings underscore the interconnected effects of structural and electrode design on DEA performance, offering practical design guidelines for optimizing soft actuator systems. This research lays a solid foundation for future applications of DEAs in haptic interfaces, wearable actuators, and soft robotics.
Improving the interfacial stability between cathode active material (CAM) and solid electrolyte (SE) is essential for enhancing the performance and durability of all-solid-state batteries (ASSBs). One promising method to achieve this is through surface coating with a chemically stable ion conductor, which helps suppress interfacial side reactions and improve long-term cycling stability. In this study, we deposited a uniform LiNbO3 (LNO) protective layer on NCA using particle atomic layer deposition (Particle ALD). This technique utilizes a self-limiting growth mechanism to ensure precise thickness control. We characterized the structural and chemical properties of the coated CAM with X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), confirming the successful formation of a uniform LNO layer. Electrochemical evaluations revealed that LNO@NCA exhibited significantly improved capacity retention, maintaining 68.1% after 50 cycles at a 1C rate, compared to just 56.5% for the uncoated sample. This enhancement is attributed to the LNO layer's effectiveness in mitigating electrochemical side reactions. These findings demonstrate that Particle ALD-derived LNO coatings are an effective strategy for stabilizing CAM|SE interfaces and extending the cycle life of high-energy ASSBs.
Citations
Citations
Citations
Citations
Citations
Citations
Citations