Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

29
results for

"Motor"

Article category

Keywords

Publication year

Authors

"Motor"

REGULARs

A Study on Numerical Thermal Design Techniques for High-power Propulsion Motors
Jaehun Choi, Chiwon Park, Heesung Park
J. Korean Soc. Precis. Eng. 2025;42(11):893-900.
Published online November 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.036

Propulsion motors are vital components in marine propulsion systems and industrial machinery, where high torque and operational reliability are paramount. During operation, high-power propulsion motors generate considerable heat, which can adversely affect efficiency, durability, and stability. Therefore, an effective thermal management system is necessary to maintain optimal performance and ensure long-term reliability. Cooling technologies, such as water jackets, are commonly employed to regulate temperature distribution, prevent localized overheating, and preserve insulation integrity under high-power conditions. This paper examines the cooling performance of water jackets for high-power propulsion motors through numerical analysis. We evaluated the effects of three different cooling pipe locations and varying coolant flow rates on thermal balance and cooling efficiency. Additionally, we analyzed temperature variations in the windings and key heat-generating components to determine if a specific cooling flow rate and pipe configuration can effectively keep the winding insulation (Class H) within its 180oC limit. The findings of this study highlight the significance of optimized cooling system design and contribute to the development of efficient thermal management technologies, ultimately enhancing motor reliability, operational stability, and energy efficiency.

  • 92 View
  • 8 Download
Position Control of a Linear Motor Motion Stage Using Augmented Kalman Filter
Keun-Ho Kim, Hyeong-Joon Ahn
J. Korean Soc. Precis. Eng. 2025;42(11):887-892.
Published online November 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.011

The rapid growth of semiconductor and display manufacturing highlights the demand for fast, precise motion stages. Advanced systems such as lithography and bio-stages require accuracy at the μm and nm levels, but linear motor stages face challenges from disturbances, model uncertainties, and measurement noise. Disturbances and uncertainties cause deviations from models, while noise limits control gains and performance. Disturbance Observers (DOBs) enhance performance by compensating for these effects using input–output data and a nominal inverse model. However, widening the disturbance estimation bandwidth increases noise sensitivity. Conversely, the Kalman Filter (KF) estimates system states from noisy measurements, reducing noise in position feedback, but it does not treat disturbances as states, limiting compensation. To address this, we propose an Augmented Kalman Filter (AKF)–based position control for linear motor stages. The system was modeled and identified through frequency response analysis, and DOB and AKF were implemented with a PIV servo filter. Experimental validation showed reduced following error, jitter, and control effort, demonstrating the improved control performance of the AKF approach over conventional methods.

  • 116 View
  • 12 Download

SPECIAL

Trends in Amyotrophic Lateral Sclerosis Microphysiological Systems and the Challenges
Hee-Gyeong Yi, Sang-Jin Lee, Yeong-Jin Choi, Jin-A Kim
J. Korean Soc. Precis. Eng. 2025;42(9):703-711.
Published online September 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.095

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder marked by the progressive degeneration of motor neurons and muscle atrophy. Despite extensive clinical research, effective treatments remain scarce due to the complexity of the disease's mechanisms and the inadequacy of current preclinical models. Recent advancements in microphysiological systems (MPS) present promising alternatives to traditional animal models for studying ALS pathogenesis and evaluating potential therapies. This review outlines the latest developments in ALS MPS, including co-culture membrane-based systems, microfluidic compartmentalization, microarray platforms, and modular assembly approaches. We also discuss key studies that replicate ALS-specific pathologies, such as TDP-43 aggregation, neuromuscular dysfunction, and alterations in astroglial mitochondria. Additionally, we identify significant challenges that need to be addressed for more physiologically relevant ALS modeling: replicating neural fluid flow, incorporating immune responses, reconstructing the extracellular matrix, and mimicking the pathological microenvironment. Finally, we emphasize the potential of ALS MPS as valuable tools for preclinical screening, mechanistic studies, and personalized medicine applications.

  • 69 View
  • 2 Download
Articles
Cutting Force Monitoring Considering Electrical Characteristics of Spindle Motor
Jae-Eun Kim, Jun-Young Oh, Beomsik Sim, Wonkyun Lee
J. Korean Soc. Precis. Eng. 2025;42(1):19-25.
Published online January 1, 2025
DOI: https://doi.org/10.7736/JKSPE.024.095
The importance of cutting forces in machining has been emphasized for monitoring and optimizing cutting conditions, leading to various method to detecting cutting forces researched. Cutting forces can be directly measured using dynamometer or indirectly estimated using AE sensors and accelerometers, etc. However, these external sensors demand high costs and have accuracy limitations due to environment issues. To compensate for these drawbacks, utilizing internal signals of machine tool has been developed. Among these, using internal electrical signals of machine tool is representative. In commercial machine tools, cutting forces are often estimated through current measurements. However, due to the characteristics of the spindle motor, electrical properties such as slip, power factor, and efficiency vary with the load, resulting in relatively lower accuracy. This study introduces current-based method considering characteristics of motor and power-based method for estimating cutting forces and compare accuracy of those methods with the measurements from dynamometer respectively.
  • 28 View
  • 3 Download
Development of Simulation Model for a 40 kW Electric Tractor based on Dual Motors and Single Planetary Gear
Gang Hyun Kim, Kyeong Dae Kim, Si Yeong Lee, Dae Cheol Kim, Won Gun Kim
J. Korean Soc. Precis. Eng. 2024;41(12):939-948.
Published online December 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.084
The purpose of this paper was to develop a simulation model for a 40 kW electric tractor using a powertrain based on dual motors and a planetary gear. To select motor capacity and reduction gear ratio based on the power flow for agricultural work, load data for various gear conditions were acquired and analyzed using a 42 kW engine tractor of similar capacity. Modeling was conducted using MATLAB/Simulink/Simscape. Load data acquired through actual field tests were applied as load conditions for the simulation. Simulation results confirmed that the power was transmitted through the planetary gear as the clutch and brake operated according to the work mode. The developed simulation model is expected to be used for electric tractor development.
  • 33 View
  • 1 Download
Customized Current Control of a Linear Motor Motion Stage
Kyung Ho Yang, Hyeong-Joon Ahn
J. Korean Soc. Precis. Eng. 2024;41(11):875-880.
Published online November 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.085
In the 4th Industrial Revolution, advancements in semiconductor technology demand high performance, efficiency, and precision, highlighting the importance of high-speed and ultra-precise motion stages. To improve positioning performance of a motion stage, robust torque generation by current controllers alongside position control is crucial. This paper explored a custom current control for linear motor motion stages. We built a linear motor motion stage with a 560 mm stroke, 5 m/s speed, and 280 N continuous thrust supported by air bearings and equipped with a passive reaction force compensation. Custom user code for position and current controls of PowerPMAC motion controller was developed for the motion stage. The position control code included frequency domain system identification, disturbance observer, and repetitive learning control while the current control code featured vector or d/q-axis current controllers and disturbance observer. We developed a current control tuning GUI to adjust the current control gain by injecting an excitation signal into the motion controller and measuring the frequency response of the open-loop transfer function. Experimental results confirmed the effectiveness of the custom current controller for evaluating static and dynamic performance.
  • 35 View
  • 2 Download
Model-based Motion Control Design of a Linear Motor Stage in Frequency Domain
Hee Won Jeon, Hyeong-Joon Ahn
J. Korean Soc. Precis. Eng. 2024;41(1):55-60.
Published online January 1, 2024
DOI: https://doi.org/10.7736/JKSPE.023.107
The fourth industrial revolution led to advanced servo systems, enhancing productivity across industries. However, designing these systems remains challenging due to the performance-stability trade-off. This paper presents a model-based motion control of a linear motor motion stage in frequency domain. A user-code for the PowerPMAC commercial controller was developed to excite motion control system so that we could get a frequency response. The theoretical frequency response of the servo algorithm was compared with the experimental frequency response. Based on this, a tuning graphical user interface (GUI) was developed to predict performance when the servo loop gain is changed. Especially, to compensate for residual vibrations caused by high acceleration and deceleration and to improve tracking error, DOB (Disturbance Observer) and ILC (Iterative Learning Control) control techniques were applied in the frequency domain. Through the design of the frequency domain motion controller, the control performance of the linear motor motion stage could be predicted with over 96% accuracy, resulting in a 54.32% improvement in tracking error and a 93.56% improvement in settling time, 85.29% in RMS error.

Citations

Citations to this article as recorded by  Crossref logo
  • Fuzzy Neural Network Control for a Reaction Force Compensation Linear Motor Motion Stage
    Kyung Ho Yang, Hyeong-Joon Ahn
    International Journal of Precision Engineering and Manufacturing-Smart Technology.2024; 2(2): 109.     CrossRef
  • Customized Current Control of a Linear Motor Motion Stage
    Kyung Ho Yang, Hyeong-Joon Ahn
    Journal of the Korean Society for Precision Engineering.2024; 41(11): 875.     CrossRef
  • 70 View
  • 1 Download
  • Crossref
Adaptive Control of Grinding Process based on Grinding Force for Removing the Coating from an Enameled Copper Wire
Sung-Jin Choi, Jun-Young Oh, Jin-Seo Kim, Sang-Kyung Lee, Wonkyun Lee
J. Korean Soc. Precis. Eng. 2023;40(5):361-366.
Published online May 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.036
A hairpin motor is a type of motor that is used for driving an eco-friendly car. Unlike a conventional coil-winding motor, hundreds of hairpins formed by an enameled copper wire with a rectangular cross section comprise a stator to improve the driving efficiency by maximizing a coil drip rate. With the increased use of the hairpin motor, there has been an increased interest in manufacturing techniques and automated systems of the hairpin motor. Enamel coating removal is one of the major processes of hairpin motor production; enamel coating at the end of the hairpin should be removed to connect the hundreds of hairpins by using the welding process. Grinding is one of the machining processes used for removing the enamel coating. This study proposed an adaptive control method for the grinding process to improve the efficiency and quality of the enamel coating removal process. Grinding depth is maintained during machining by controlling the vertical position of the spindle based on driving torque. A lab-scale grinding machine including a sensory system for adaptive control is developed and used to verify the performance of the proposed method.

Citations

Citations to this article as recorded by  Crossref logo
  • A Review of Intelligent Machining Process in CNC Machine Tool Systems
    Joo Sung Yoon, Il-ha Park, Dong Yoon Lee
    International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2243.     CrossRef
  • 49 View
  • 1 Download
  • Crossref
A Study on the Finite Element Model of a Permanent Magnet Synchronous Motor for Fault Diagnosis
Hyunseung Lee, Seho Son, Dayeon Jeong, Ki-Yong Oh, Byeong Chan Jeon, Kyung Ho Sun
J. Korean Soc. Precis. Eng. 2023;40(5):353-360.
Published online May 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.016
This paper proposes a high-fidelity finite element model of a permanent synchronous motor (PMSM) to predict electromagnetic responses. The proposed method aims to generate electromagnetic responses from the PMSM under various operational conditions-including normal and faulty conditions-by coupling several partial differential equations governing the electromagnetics of a PMSM. The rotor eccentricity is considered to be a representative fault of a PMSM, which has electromagnetic characteristics that differ from the healthy state of a PMSM. Note that eccentricity is the most frequent fault during PMSM operation. Therefore, the proposed model could replicate the defected torque responses of an actual motor system. The effectiveness of the proposed model is validated using measurements from a PMSM test bench. Quantitative comparison reveals that the proposed model could replicate both the transient- and steady-state torque responses of the PMSM of interest at a variety of operational conditions, including a faulty status. The proposed model could be used to generate virtual electromagnetic responses of a PMSM, which could be used for data-driven fault detection methods of electric motor systems.
  • 25 View
  • 0 Download
Displacement Estimation Algorithm of a Spindle Using Acceleration Data of a Spindle and Displacement Data of a Feed Drive System
Seung Guk Baek, Sungcheul Lee, Chang-Ju Kim, Chang Kyu Song, Seung Kook Ro
J. Korean Soc. Precis. Eng. 2022;39(11):801-810.
Published online November 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.029
In the existing machine tool field, the focus was on the displacement of the feed system from the viewpoint of the motion of the machine tool. The displacement of the tool or spindle of a machine tool is useful for developing various functions. In this study, using the acceleration data of the spindle, we proposed an algorithm that tracked the displacement of the spindle with respect to the pseudo-step waveform motion. In order to solve the bandwidth problem of the pseudo-step waveform, the displacement data measured by the motor encoder of the feed system was used. In addition, in order to solve the drift problem due to double integration, a new drift removal filter was proposed and a displacement estimation algorithm was implemented. In order to examine the performance and possibility of the proposed spindle displacement estimation algorithm, it was applied to a gantry-type engraver and its excellent performance was confirmed compared to other algorithms.

Citations

Citations to this article as recorded by  Crossref logo
  • A Review of Intelligent Machining Process in CNC Machine Tool Systems
    Joo Sung Yoon, Il-ha Park, Dong Yoon Lee
    International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2243.     CrossRef
  • 34 View
  • 0 Download
  • Crossref
Evaluation of Lower Extremity Motor Impairment in Post-Stroke Hemiplegic Patients Using Neuromuscular Response during Gait
Heesu Park, Sungmin Han, Joohwan Sung, Soree Hwang, Seung-Jong Kim, Inchan Youn
J. Korean Soc. Precis. Eng. 2022;39(9):647-655.
Published online September 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.074
The understanding of impaired neural control of gait after stroke is important to evaluate mobility impairments focused on improving walking function. Previous studies have shown that the central nervous system may control gait via muscle synergies, which modularly organizes multiple muscles. However, there are insufficient studies to evaluate mobility impairments, using muscle synergy during walking in post-stroke patients. Thus, the purpose of this study was to determine if the variability of muscle synergies during gait reflects impaired motor performance. Electromyography (EMG) signals were collected from five persons with post-stroke hemiparesis and five similarly age healthy persons, as they walked on a treadmill at a comfortable speed. EMG signals were decomposed using non-negative matrix factorization and the variability of muscle synergies was calculated using a synergy stability index (SSI). We also investigated correlation between the SSI and Fugl-Meyer assessment and Berg Balance Scale, which are clinical evaluation indicators. Post-stroke patients were found to have variable muscle synergies. We also observed a positive proportional relation, between SSI and clinical motor impair evaluation indicators. These results could yield a quantitative assessment of gait after stroke, and provide a causal relationship between internal neuromuscular mechanisms and functional performance.
  • 32 View
  • 1 Download
Measurement of Mover Position of a Linear Motor Using Two-Dimensional Magnetic Flux Density Information
Chanwoo Moon, Youngdae Lee
J. Korean Soc. Precis. Eng. 2022;39(5):331-336.
Published online May 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.016
A linear motor is an actuator that has strong thrust and high controllability, and can perform linear motion without the use of a motion converter. In this study, we propose a new method to measure the position of the mover of a permanent magnet linear synchronous motor by measuring the magnetic flux density. To resolve the problem that existing methods have to spatially arrange multiple sensors, the proposed method uses a two-dimensional magnetic flux density measurement value at one point. In accordance with this, the estimation method was modified, the convergence condition of the estimation method was obtained, and the time required for the calculation was estimated. The validity of the proposed method was verified through comparative experiments with existing methods. As a result of the test, the proposed method had a small maximum absolute error compared to the existing methods, and was robust against sensor gain changes.
  • 19 View
  • 0 Download
Strategy for Motor Grader Blade Rotation considering Soil Distribution
Jinkyu Lee, Jangho Bae, Oyoung Kwon, Hanul Kim, Chai Sol, Daehie Hong
J. Korean Soc. Precis. Eng. 2022;39(3):201-208.
Published online March 1, 2022
DOI: https://doi.org/10.7736/JKSPE.021.115
Research on the automation of many types of construction equipment, including motor graders, is being actively conducted. In a motor grader cabin, the operator has difficulty observing the working environment because of a constructed field of view. Thus, workers rely on their experience and senses. Further, the working environment of the blade must be observed, and a control algorithm should be created to enable autonomous operation. In this study, a blade rotation control strategy considering the soil distribution was proposed. First, a co-simulation environment was constructed using RecurDyn for multibody dynamics analysis and EDEM for discrete element method simulation, and simulations were performed to determine the correlation between soil distribution and the blade rotation angle. Work quality and blade load were analyzed according to the simulation results. The optimal blade rotation angle according to soil distribution was obtained to develop the strategy for autonomous flattening and scattering work. The proposed control strategy was implemented in a 1/4 full-scale motor grader experimental setup. An experiment to evaluate work quality was conducted to validate the effectiveness of the proposed methods. The experimental results indicated that the proposed strategy effectively performed scattering work.

Citations

Citations to this article as recorded by  Crossref logo
  • Path Planning Strategy for Implementing a Machine Control System in Grader Operations
    Jae-Yoon Kim, Jong-Won Seo, Wongi S. Na, Sung-Keun Kim
    Applied Sciences.2024; 14(20): 9432.     CrossRef
  • 39 View
  • 1 Download
  • Crossref
Frequency Analysis of the Servo System with Three-Stage Reducer considering the Backlash Ratios and Motor Input Voltage
Joo Hyun Baek, Tae Young Chun, Jong Geun Jeon, Young Hwan Jo
J. Korean Soc. Precis. Eng. 2021;38(9):691-699.
Published online September 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.064
This paper proposed the simulation model of the servo system with three-stage reducer and presented the result of frequency analysis of the servo system considering backlash ratios and motor input voltage. By virtue of this work, we realized that if the motor input voltage of the system was large, the influence of each stage backlash ratio could be minimized or removed. Besides, we also found that if the motor input voltage was small, this created an optimal backlash ratio combination which could maximize the anti-resonance and resonance frequency of the servo system. This paper could be useful for determining each stage backlash ratio in designing a three-stage geared servo system with fast response.
  • 18 View
  • 0 Download
Smart Design of Rotor and Permanent Magnet considering Torque and Torque Ripple of Interior Permanent Magnet Synchronous Motor of Electric Vehicle
Seong-Hwan Bang, Si-Mok Park, Min-Gi Chu, Ji-Hun Song, Dong-Ryul Lee
J. Korean Soc. Precis. Eng. 2021;38(8):605-612.
Published online August 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.043
The aim of this research was to investigate the torque performance of the motor in an electric vehicle depending on the rotor shape and air gap. The research focused on numerical comparison of torque performance of new rotors based on the average torque and torque ripple rate, which appeared according to the number and placement of permanent magnets. This research was numerically analyzed by MAXWELL V21.1. Average torque values in cases 1, 2, and 3 were increased, but vibration and noise in cases 1 and 3 were increased as the torque ripple rate increased. Considering the average torque and torque ripple rate, the torque performance of case 2 was the most optimal. Compared with Model N, the average torque of case 2 was increased by 9.1% and the torque ripple rate was reduced by 1.5%. The torque performance according to the size of air gap was compared with the basic model of case 2, which showed the best performance. An air gap of 0.7 mm applied to Model N showed the best torque performance. An additional magnet on case 2 and air gap of 0.7 mm provided the best torque performance and improved the driving motor performance for motor durability.

Citations

Citations to this article as recorded by  Crossref logo
  • Vehicle-motion-based Front Wheel Steer Angle Estimation for Steer-by-Wire System Fault Tolerance
    Seungyong Choi, Wanki Cho, Seung-Han You
    Journal of the Korean Society for Precision Engineering.2024; 41(5): 347.     CrossRef
  • Numerical Analysis of Outer-Rotor Synchronous Motors for In-Wheel E-Bikes: Impact of Number of Windings, Slot, and Permanent Magnet Shapes
    Jaewoong Han, Chanyoung Jin, Insu Cho, Jinwook Lee
    Applied Sciences.2024; 14(10): 4167.     CrossRef
  • 41 View
  • 1 Download
  • Crossref