Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

44
results for

"Material"

Article category

Keywords

Publication year

Authors

"Material"

REGULAR

Techniques for Tool Life Prediction and Autonomous Tool Change Using Real-time Process Monitoring Data
Seong Hun Ha, Min-Suk Park, Hoon-Hee Lee
J. Korean Soc. Precis. Eng. 2025;42(11):949-958.
Published online November 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.077

Materials such as titanium alloys, nickel alloys, and stainless steels are difficult to machine due to low thermal conductivity, work hardening, and built-up edge formation, which accelerate tool wear. Frequent tool changes are required, often relying on operator experience, leading to inefficient tool use. While modern machine tools include intelligent tool replacement systems, many legacy machines remain in service, creating a need for practical alternatives. This study proposes a method to autonomously determine tool replacement timing by monitoring machining process signals in real time, enabling automatic tool changes even on conventional machines. Tool wear is evaluated using current and vibration sensors, with the replacement threshold estimated from the maximum current observed in an initial user-defined interval. When real-time signals exceed this threshold, the system updates controller variables to trigger tool changes. Results show vibration data are more sensitive to wear, whereas current data provide greater stability. These findings indicate that a hybrid strategy combining both sensors can enhance accuracy and reliability of tool change decisions, improving machining efficiency for difficult-to-cut materials.

  • 11 View
  • 1 Download

SPECIALs

Emerging Patterning Strategies for Intrinsically Stretchable Conductors: Materials, Architectures, and Device-level Performance
Donghyeon Seo, Seongsik Jeong, Hae-Jin Kim
J. Korean Soc. Precis. Eng. 2025;42(10):789-816.
Published online October 1, 2025
DOI: https://doi.org/10.7736/JKSPE.D.25.00003

Intrinsically stretchable electronics enable seamless integration with dynamic biological tissues and curved surfaces, making them vital for next-generation wearables, biointerfaces, and intelligent robotics. Yet, precise, high-resolution patterning of stretchable electrodes and circuits remains challenging, limiting practical applications. Traditional lithography offers excellent resolution but is hindered by thermal and chemical incompatibilities with soft substrates. Consequently, alternative approaches such as soft lithography, laser-based patterning, printing methods, and electrospray deposition have gained importance. Soft lithography provides an economical, low-temperature option suitable for delicate materials like liquid metals. Laser-based techniques deliver high resolution and design flexibility but require careful parameter tuning for specific substrates. Mask-free printing methods, including direct ink writing and inkjet printing, enable versatile patterning of complex geometries, while electrospray deposition supports precise, non-contact patterning on stretchable surfaces. Collectively, these techniques advance the fabrication of robust stretchable displays, wireless antennas, and bioelectronic interfaces for accurate physiological monitoring. Despite progress, challenges persist, particularly in achieving large-area uniformity, multilayer stability, and sustainable processing. Addressing these issues demands interdisciplinary collaboration across materials science, fluid dynamics, interfacial engineering, and digital manufacturing. This review highlights recent progress and remaining hurdles, offering guidance for future research in stretchable electronics.

  • 7 View
  • 0 Download
Dual-laser-assisted Defect Engineering and Chlorination for Enhanced Photoluminescence in MoS2
Yoonsoo Rho
J. Korean Soc. Precis. Eng. 2025;42(10):783-787.
Published online October 1, 2025
DOI: https://doi.org/10.7736/JKSPE.D.25.00002

In this study, we demonstrate a synergistic enhancement of photoluminescence (PL) in an atomically thin molybdenum disulfide (MoS2) monolayer using a dual-laser-beam-assisted chemical modification method. A continuous-wave (CW) green laser, directed perpendicularly at the MoS2, locally raises the temperature and induces the formation of sulfur (S) vacancies, resulting in a significant increase in PL intensity. Subsequently, a UV nanosecond laser beam laterally illuminates the area above the MoS2 layer, breaking chlorine molecules and introducing chlorine radicals without damaging the sample. This process further enhances the PL in the region previously affected by S vacancies. The binding energy of chlorine atoms to S-vacancy sites is greater than that to the pristine MoS2 surface, facilitating more effective p-type doping. The stronger interaction at the defect sites created by the CW laser contributes to the observed synergistic PL enhancement. Our approach presents a novel method for precise and spatially selective chemical doping in two-dimensional (2D) van der Waals (vdW) materials.

  • 12 View
  • 0 Download
Articles
A high-pressure in-situ permeation measuring system was developed to evaluate hydrogen permeation properties of polymer sealing materials under hydrogen environments up to 100 MPa. This system could perform real-time monitoring of hydrogen permeation following high-pressure hydrogen injection, employing the volumetric method for quantitative measurement. By utilizing a self-developed permeation-diffusion analysis program, this system enabled precise evaluation of permeation properties, including permeability, diffusivity and solubility. To apply the developed system to high-pressure hydrogen permeation tests, hydrogen permeation properties of ethylene propylene diene monomer (EPDM) materials containing silica fillers, specifically designed for use in high-pressure hydrogen environments, were evaluated. Permeation measurements were conducted under pressure conditions ranging from 5 to 90 MPa. Results showed that as pressure increased, hydrogen permeability and diffusivity decreased while solubility remained constant regardless of pressure. Finally, the reliability of this system was confirmed through uncertainty analysis of permeation measurements, with all results falling within an uncertainty of 10.8%.
  • 5 View
  • 0 Download
Recent Advances in Ionic Polymer-Metal Composite Sensors
Gwon Min Kim, Seong-Jun Jo, Jaehwan Kim
J. Korean Soc. Precis. Eng. 2025;42(5):367-379.
Published online May 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.012
This paper extensively explores and analyzes the latest research trends in Ionic Polymer-Metal Composites (IPMC) sensors. IPMC sensors are known for their flexibility, lightness, and high responsiveness. They show great promise across different fields. They can respond sensitively to various stimuli such as mechanical deformation, humidity, and pressure, making them ideal for bio-responsive detection, health monitoring, and energy harvesting. This paper introduces actuation and sensing mechanisms of IPMCs, discusses their manufacturing processes, and explores how these processes can influence the responsiveness and stability of sensors. Moreover, through case studies of IPMC-based research that can perform self-sensing functions, it presents possibilities brought by the integration of sensors and actuators. This paper emphasizes the potential for research and development of IPMC sensors to expand into various industrial fields and explores ways to continuously improve the accuracy and reliability of sensors. IPMC-based sensors are expected to play a significant role in advancing medical devices and wearable technologies, thereby facilitating innovation in the field.
  • 6 View
  • 0 Download
Comparison of Machining Characteristics of PCD Gun Drill and PCD Twist Drill Manufactured by Brazing
Ho Min Son, Kyung Hwan Park, Dong Gyu Kim, Min-Woo Sa
J. Korean Soc. Precis. Eng. 2025;42(5):349-354.
Published online May 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.005
Recently, lightweight materials centered on the future mobility industry are used in various parts such as battery housings and EV platform frames to improve fuel efficiency of automobile engines. Polycrystalline Diamond (PCD) tools are in demand by parts processing companies to improve productivity for machining lightweight parts. PCD drills have excellent cutting performance and wear resistance in high-speed machining. They are expected to grow in the global cutting tool market in the future. Research is needed to improve their performance. In this study, PCD gun drill and twist drill were respectively manufactured using brazing technology. Comparative machining experiments were then conducted. The PCD gun drill is a straight-shaped tool with a PCD tip brazed to a tool body groove for the tip to enter the cutting edge. The PCD twist drill is a spiral-shaped tool with a PCD drill blank brazed to a V-shaped butt joint with the tool body and an internal groove. Both PCD drills were successfully manufactured and evaluated for dimensional accuracy and surface quality by machining aluminum alloy materials with MCT equipment. In the future, we will evaluate not only aluminum materials, but also various machining materials.
  • 33 View
  • 0 Download
Micro Hole Machining Characteristics of Glassy Carbon Using Electrical Discharge Machining (EDM)
Jae Yeon Kim, Ji Hyo Lee, Bo Hyun Kim
J. Korean Soc. Precis. Eng. 2025;42(4):325-332.
Published online April 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.006
Glassy carbon (GC) has superior properties such as high corrosion resistance, heat resistance, and low adhesion to glass materials in a glass molding process (GMP). In addition, the demand for GC molds is increasing in various industries that require high precision of glass parts. However, GC is a difficult-to-machine material with high hardness and brittleness. Electrical discharge machining (EDM) can machine GC regardless of its strength or hardness. In this study, tungsten carbide (WC-Co) electrode was fabricated by wire electrical discharge grinding (WEDG). Characteristics of EDM of micro holes on GC were then analyzed. As capacitance and voltage increased, material removal rate (MRR) increased while machining time tended to decrease. However, at low voltages, short circuit and secondary discharge occurred, which increased the electrode wear rate (EWR). As a result, a D-shaped electrode that could prevent short circuit and debris accumulation was fabricated and a micro hole array was machined.
  • 7 View
  • 0 Download
Study on the Design of a Small-Scale Soft Jamming Gripper
Jingon Yoon, Jaeyeong Keum, Changgi Lee, Dongwon Yun
J. Korean Soc. Precis. Eng. 2025;42(3):241-246.
Published online March 1, 2025
DOI: https://doi.org/10.7736/JKSPE.024.130
In soft robotics, gripper technology based on granular jamming offers the capability to adapt flexibly to objects of diverse shapes and material properties. Specifically, small-scale jamming grippers can address tasks challenging for conventional grippers either by enhancing gripping performance or by extending functionality when combined with rigid grippers. This study investigated effects of membrane morphology, thickness, and material on performances of small-scale jamming grippers to identify optimal design parameters. Experiments were conducted with three membrane morphologies, two thickness levels, and two material types. Results indicated that a concentric-pocket membrane morphology, a membrane thickness of 1.5 mm, and a soft material such as Dragon Skin 10 achieved a superior holding force of 430.7 gf. These findings indicate that softer materials can improve the membrane's ability to conform to objects, while increasing thickness can minimize deformation due to tensile forces, thereby enhancing gripping stability. Furthermore, experiments demonstrated that this configuration could enable the gripper to safely grasp objects of various shapes and perform additional tasks, such as rotating valves and handles, with effectiveness.
  • 6 View
  • 0 Download
In-situ Wired and Wireless Material Testing System with Nanometer-level Displacement Control
Kyoung Seok Park, Pill Ho Kim, Chung-Seog Oh
J. Korean Soc. Precis. Eng. 2024;41(11):881-888.
Published online November 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.086
To accurately assess mechanical properties of micro- and nano-sized specimens, a reliable material testing system is indispensable. However, due to small sizes of these test specimens, in-situ measurement of their mechanical behavior necessitates installing the tester within high-magnification microscopes such as SEM. Traditionally, researchers have used wired methods by placing the tester inside the SEM chamber and connecting it to an external controller via electrical feedthrough. Unfortunately, this approach is cumbersome. In addition, it limits its compatibility with other SEMs. In this study, we developed a compact controller capable of driving 3-axis piezoelectric actuators with nanometer-level displacement control resolution via Bluetooth communication. This innovative setup enables wireless control and data acquisition from outside the closed confines of an SEM chamber. To validate the versatility of our tester, we conducted both a nanoindentation test on a fused silica specimen using a Berkovich indenter in a wired configuration and a copper micropillar compression test wirelessly using a flat punch indenter within an SEM. By installing this tester in various measurement systems, researchers could observe deformation patterns in real time, making it a valuable tool for investigating deformation mechanisms of diverse micro- and nano-sized specimens.
  • 6 View
  • 0 Download
A Numerical Investigation of Deformed Region in Plate Specimen of Split-Hopkinson Tensile Bar
Byeongjin Park, Yeon-Bok Kim, Jeong Kim
J. Korean Soc. Precis. Eng. 2024;41(8):607-615.
Published online August 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.025
In Hopkinson bar theory, stress, strain, and strain rate can be determined by analyzing the dimensions of the specimen. When conducting Split-Hopkinson Pressure Bar (SHPB) experiments, the stress-strain curve is obtained by considering the entire length and width of the specimen. However, in Split-Hopkinson Tensile Bar (SHTB) experiments, it is important to only consider the regions where deformation occurs in order to accurately determine the dynamic material properties. This study introduces a method for selecting the dimensions of the deformed region (LD and WD) in plate specimens for SHTB experiments using Finite Element Analysis (FEA). The analysis involved varying the length and width of a 1 mm thick SUS430 specimen, and the deformed region was determined using the proposed method. The stress-strain curves obtained from this region were then compared with the input Cowper-Symonds model. The validity of the proposed approach was confirmed, as the percentage error between them ranged from 2.54 to 6.62%.
  • 5 View
  • 0 Download
Electrically Assisted Solid-state Spot Joining of Dissimilar Aluminum Alloys for Automobile Structures
Hyeon-Seok Choi, Seungbi Cha, Jin-Cheol Kim, Sung-Tae Hong, Changjoo Lee, Ki Seok Nam
J. Korean Soc. Precis. Eng. 2024;41(4):321-328.
Published online April 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.003
A feasibility study of electrically assisted solid-state spot joining (EASSJ) of dissimilar aluminum alloys for automobile structures was conducted. EASSJ of dissimilar automotive aluminum alloys (AA6451 and AA6014) was conducted by simultaneously applying step-by-step current and compressive load to the faying interface (lap spot joining), while the temperature was controlled to be lower than melting points of joining alloys. To evaluate the soundness of the joint, a nugget pull-out fracture mode under shear tensile test was set as a criterion. Microstructure analysis was also conducted to evaluate characteristics of the joint. Experimental results suggest that the EASSJ is clearly feasible in joining dissimilar aluminum alloys for automobile structures.
  • 5 View
  • 0 Download
Study on PCM Cooling of Wireless Charger Using Electromagnetic Field-thermal-fluid-structure Coupled Analysis
Soonjae Hwang, Sarang Yi, Seakmoo Hong
J. Korean Soc. Precis. Eng. 2024;41(4):305-312.
Published online April 1, 2024
DOI: https://doi.org/10.7736/JKSPE.023.150
With the increasing use of portable devices, the safety and efficiency of wireless chargers have become significant concerns. Wireless chargers can cause battery damage, deformation, and failure of the charging module due to the high temperatures generated during the charging process. Thus, the importance of thermal management has been increasingly emphasized. In this study, we experimentally confirmed that cooling performance was improved by applying phase change material (PCM) to the heat-generating parts of the wireless charger. The cooling performance of the PCM was analyzed using Ansys Fluent, the component temperature was measured with an infrared camera, and 3D thermal deformation was measured with a DIC measurement device. Electromagnetic field, thermal, fluid, and structural coupled analyses were performed to investigate the impact of thermal deformation caused by wireless charging. The results showed that the temperature and deformation error was within 3% of the coupled analysis results, and the proposed electromagneticthermal-fluid-structural coupled analysis enabled more accurate simulation prediction of the physical coupling process inside the wireless charger.
  • 5 View
  • 0 Download
A Study on Pattern Machining Technology for Germanium Materials Using Grooving Machining Process
Joong Kyu Ham, Jong Gyun Kang, Hwan Ho Maeng, Seong Hyeon Park, Jin Yong Heo, Young Durk Park, Geon Hee Kim
J. Korean Soc. Precis. Eng. 2024;41(2):111-116.
Published online February 1, 2024
DOI: https://doi.org/10.7736/JKSPE.023.130
In the optical systems field, key components such as spectroscopic elements often require the use of optical materials with high-refractive indices to achieve miniaturization and lightweight characteristics. However, high-refractive index optical materials have low machinability due to their brittle characteristic. In this study, we investigated the changes in surface characteristics during precision pattern machining of high-refractive index materials; specifically, a low fracture toughness, for use in grating spectroscopic elements. The experiment involved diamond turning for the primary machining, and for the secondary pattern machining, the tool rake angle, tool feed rate, and depth of cut were set as variable conditions. Surface roughness measurements and surface quality analyses were carried out using a white-light interferometer and tool microscopy. The results provide insights into the influence of conditions on the surface properties during the machining of high-refractive index materials for grating spectroscopic components. Under the machining conditions with a tool rake angle of -65o, tool feed rate of 5,000 mm/min, and a depth of cut 10 nm, the surface roughness of Ra 8.0 nm was achieved. Based on these findings, we plan to conduct further research on the mechanical fabrication of the blaze angle for grating spectroscopic components.
  • 5 View
  • 0 Download
A Study on the Wear Phenomena of PLA and PETG Materials for 3D Printing in Non-lubricated Condition
Yonsang Cho, Hyunseop Lee
J. Korean Soc. Precis. Eng. 2024;41(2):145-151.
Published online February 1, 2024
DOI: https://doi.org/10.7736/JKSPE.023.119
With the recent development of 3D printing technology, various 3D printing materials have been developed and used. To utilize 3D-printed products with mechanical parts, studies on friction and wear characteristics according to relative motion between materials are required. However, tribology studies on 3D-printed materials are limited compared to those of the existing materials for mechanical parts. In this study, the frictional and wear characteristics are identified through a reciprocating wear test in non lubricated conditions between the Polylactic Acid (PLA) and Polyethylene Terephthalate Glycol (PETG) printed in the Fused Deposition Modeling (FDM) method. In the wear test between the same materials, the friction coefficient and wear rate were higher in the PLA than in the PETG, and PLA was deposited on the block due to high frictional heat. In the wear test of the PLA block and PETG bump, the wear of the PLA block decreased compared to the wear test between the same materials, but the wear of the PETG bump tended to increase. Therefore, it seems that the 3D-printed PETG may be more advantageous in terms of friction and wear than 3D-printed PLA during relative movement in a non lubricating condition.

Citations

Citations to this article as recorded by  Crossref logo
  • Tribological Properties of Fused Deposition Modeling-Printed Polylactic Acid and PLA-CF: Extrusion Temperature and Internal Structure
    Paweł Zawadzki, Justyna Rybarczyk, Adam Patalas, Natalia Wierzbicka, Remigiusz Łabudzki, Băilă Diana, Fodchuk Igor, Bonilla Mirian
    Journal of Tribology.2026;[Epub]     CrossRef
  • Artificial Intelligence Technologies and Applications in Additive Manufacturing
    Selim Ahamed Shah, In Hwan Lee, Hochan Kim
    International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2463.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
Study of Condensation Heat Transfer Enhancement Using Micro/Nano Surface Modification Techniques
Younghun Shin, Kwon-Yeong Lee, Woonbong Hwang
J. Korean Soc. Precis. Eng. 2023;40(9):733-739.
Published online September 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.058
Condensation is an important research topic that ensures increased energy efficiency. Our researchers aimed to optimize heat transfer in industrial heat exchanger tubes through surface modification. We first succeeded in fabricating superhydrophilic and superhydrophobic tubes using surface modification. We observed the condensation phenomenon on the outside of the tube and evaluated the heat transfer performance through a condensation experimental facility. As a result, we found that the condensation heat transfer efficiency of superhydrophobic tubes is superior to that of conventional tubes. However, the heat transfer efficiency of the superhydrophobic tube reduced with an increase in saturation. To improve performance degradation, superhydrophilic and superhydrophobic hybrid tubes were fabricated and evaluated for their potential to improve heat transfer efficiency. As a result, we found that the liquid film generated by filmwise condensation on the superhydrophilic surface swept past the residual droplets generated by dropwise condensation on the superhydrophobic surface, resulting in the best heat transfer performance. Our results break the stereotypes of previous studies and provide a new paradigm for achieving optimal heat transfer performance on large-area curved surfaces. This research is expected to be widely applied in a variety of industries where energy efficiency is critical.
  • 7 View
  • 0 Download