Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

  • HOME
  • BROWSE ARTICLES
403
results for

Keywords

Most-download articles are from the articles published in 2023 during the last three month.

Special

Parametric Studies of Ionomer Content in PEMFC MEA with Different Humidity
Byung Gyu Kang, Hyeon Min Lee, Ye Rim Kwon, Sun Ki Kwon, Ki Won Hong, Seoung Jai Bai, Gu Young Cho
J. Korean Soc. Precis. Eng. 2025;42(12):975-980.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.00006
The ionomer content in the catalyst layer is a crucial design factor that affects the performance of polymer electrolyte membrane fuel cells (PEMFCs). However, the optimal ionomer content can vary based on the surrounding humidity levels. This study systematically evaluated the influence of the ionomer-to-carbon (I/C) ratio (0.00, 0.55, and 0.91) on PEMFC performance under fully humidified (RH 100%) and low-humidity (RH 25%) conditions. Membrane-electrode assemblies (MEAs) were fabricated using a spray coating technique, and their electrochemical properties were analyzed through polarization curves and electrochemical impedance spectroscopy (EIS). Under RH 100%, the MEA with an I/C ratio of 0.55 achieved the highest peak power density of 519.8 mW/cm2, indicating a successful balance between proton conductivity and gas transport. Conversely, under RH 25%, the best performance of 203.9 mW/cm2 was observed at an I/C ratio of 0.91. This shift is attributed to improved water retention at higher ionomer content, which reduced membrane dehydration and lowered both ohmic and Faradaic resistances. These findings highlight the dual role of the ionomer in facilitating proton transport and managing water balance, emphasizing the necessity of optimizing the I/C ratio according to operating conditions for stable and high-performing PEMFC operation.
  • 100 View
  • 21 Download

Article

Deep-learning-based Motion Recognition Using a Single Encoder for Hip Exoskeleton
Min-Ho Seo, Byeong-Hoon Bang, Dong-Youn Kuk, Sung Q Lee, Young-Man Choi
J. Korean Soc. Precis. Eng. 2025;42(8):589-594.
Published online August 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.019
Commercial exoskeletons currently utilize multiple sensors, including inertial measurement units, electromyography sensors, and torque/force sensors, to detect human motion. While these sensors improve motion recognition by leveraging their unique strengths, they can also lead to discomfort due to direct skin contact, added weight, and complex wiring. In this paper, we propose a simplified motion recognition method that relies solely on encoders embedded in the motors. Our approach aims to accurately classify various movements by learning their distinctive features through a deep learning model. Specifically, we employ a convolutional neural network algorithm optimized for motion classification. Experimental results show that our model can effectively differentiate between movements such as standing, lifting, level walking, and inclined walking, achieving a test accuracy of 98.76%. Additionally, by implementing a sliding window maximum algorithm that tracks three consecutive classifications, we achieved a real-time motion recognition accuracy of 97.48% with a response time of 0.25 seconds. This approach provides a cost-effective and simplified solution for lower limb motion recognition, with potential applications in rehabilitation-focused exoskeletons.
  • 102 View
  • 12 Download

Special

Development of Transformer-based Model for Prediction of PEMFC Remaining Useful Life
Da Hye Geum, Hyeon Do Han, Hyunjun Yang, Heejun Shin, Suk Won Cha, Gu Young Cho
J. Korean Soc. Precis. Eng. 2025;42(12):981-986.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.00015
A Transformer model to predict the remaining useful life of a fuel cell, which has demonstrated superior performance in analyzing time series data. The dataset was created from long-term performance evaluation experiments conducted in rated power mode, with measurements taken every 10 hours. We preprocessed the raw data using a moving average, allocating 70% for training and 30% for evaluation. The model's performance, evaluated through MAE, MSE, and MAPE, was excellent. The fuel cell's critical voltage, defined as 94.5% of its initial voltage, was measured at 0.719 V. During the experimental run, the actual critical time was 106.6 hours, while the model predicted 106.8 hours, resulting in a 0.19% error. Since the predictions were based on data collected up to 93 hours, the estimated remaining life was 13.8 hours.
  • 50 View
  • 9 Download

Regular

Analysis of Convective Heat Transfer Coefficient of Double-wall Gyroid TPMS under Constant Surface Temperature Conditions
Sohyun Park, Jihyun Sung, Dahye Kim, Kunwoo Kim
J. Korean Soc. Precis. Eng. 2025;42(12):1071-1077.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.026
In this study, we comparatively analyzed the convective heat transfer performance of single-wall and double-wall Gyroid TPMS (Triply Periodic Minimal Surface) structures. Using computational fluid dynamics (CFD), we evaluated the average convective heat transfer coefficients under constant surface temperature conditions for both constant velocity and constant pressure flow. Although both structures maintained the same fluid volume, the double-wall configuration increased the surface area by approximately 1.8 to 1.9 times, resulting in enhanced heat transfer performance. Under constant velocity conditions, the double-wall structure exhibited an average convective heat transfer coefficient that was 1.3 to 1.4 times higher than that of the single-wall structure. Under constant pressure conditions, we observed an increase of 1.06 to 1.1 times. Despite the double-wall structure leading to greater pressure losses due to increased shear stress from the formation of microchannels, it still maintained improved heat transfer performance even with reduced mass flow rates under constant pressure conditions. These findings provide fundamental data for designing TPMS-based cooling systems and optimizing additive manufacturing processes.
  • 26 View
  • 8 Download

Special Issue Article

Green Manufacturing for Energy Systems in the era of NetZero 2050
Ji Hwan Ahn
J. Korean Soc. Precis. Eng. 2025;42(12):973-973.
Published online December 1, 2025
  • 86 View
  • 8 Download

REGULAR

Position Control of a Linear Motor Motion Stage Using Augmented Kalman Filter
Keun-Ho Kim, Hyeong-Joon Ahn
J. Korean Soc. Precis. Eng. 2025;42(11):887-892.
Published online November 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.011

The rapid growth of semiconductor and display manufacturing highlights the demand for fast, precise motion stages. Advanced systems such as lithography and bio-stages require accuracy at the μm and nm levels, but linear motor stages face challenges from disturbances, model uncertainties, and measurement noise. Disturbances and uncertainties cause deviations from models, while noise limits control gains and performance. Disturbance Observers (DOBs) enhance performance by compensating for these effects using input–output data and a nominal inverse model. However, widening the disturbance estimation bandwidth increases noise sensitivity. Conversely, the Kalman Filter (KF) estimates system states from noisy measurements, reducing noise in position feedback, but it does not treat disturbances as states, limiting compensation. To address this, we propose an Augmented Kalman Filter (AKF)–based position control for linear motor stages. The system was modeled and identified through frequency response analysis, and DOB and AKF were implemented with a PIV servo filter. Experimental validation showed reduced following error, jitter, and control effort, demonstrating the improved control performance of the AKF approach over conventional methods.

  • 83 View
  • 8 Download

Article

Prediction of Steel Plate Deformation in Line Heating Process Using Conditional Generative Adversarial Network (cGAN)
Young Soo Yang, Kang Yul Bae
J. Korean Soc. Precis. Eng. 2025;42(6):411-420.
Published online June 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.010
This study proposed a conditional generative adversarial network (cGAN) model for predicting steel plate deformation based on heating line positions in a line heating process. A database was constructed by performing finite element analysis (FEA) to establish relationships between heating line positions and deformation shapes. Deformation shapes were converted into color map images. Heating line positions were used as conditional labels for training and validating the proposed model.
During the training process, generator and discriminator loss values, along with MSE and R² metrics, converged stably, demonstrating that generated images closely resembled the actual data. Validation results showed that predicted deformation magnitudes had an average relative error of approximately 3% and a maximum error of less than 7%. These findings confirm that the proposed model can effectively predict steel plate deformation shapes based on heating line positions in the line heating process, making it a reliable predictive tool for this application.
  • 22 View
  • 8 Download

Special

A Review on Performance Improvement of Solid Oxide Cells via Atomic Layer Deposition
Min Seong Gwon, Kyoungjae Ju, Jihwan An
J. Korean Soc. Precis. Eng. 2025;42(12):987-995.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.00017
Atomic Layer Deposition (ALD) has emerged as a promising technique for fabricating thin films that enhance the performance of solid oxide fuel cells and solid oxide electrolysis cells. ALD allows for precise control over film thickness and composition at the atomic level, resulting in uniform and dense thin films. These characteristics enable the deposition of thin, homogeneous layers of various materials onto the porous electrode surfaces of solid oxide cells, thereby increasing electrochemical activity and reducing activation losses. Additionally, thin-film electrolytes produced through ALD can achieve high ionic conductivity and low ohmic losses, facilitating a reduction in the operating temperature of solid oxide cells. This review summarizes recent research trends in applying ALD technology to the fuel electrode, air electrode, and electrolyte of solid oxide cells and discusses design strategies aimed at improving efficiency and long-term stability.
  • 41 View
  • 7 Download

Regular

Study on Phase and Tip-tilt Control Using Adaptive SPGD Algorithm for Coherent Beam Combining
Hyeong Min Yoon, Sangmin Lee, Jae Woo Jung, Kang Hee Lee, Jae Heon Jung, Chang Hwan Kim, Byunghyuck Moon, Eunji Park, Ki Hyuck Kim, Seongmook Jeong, Jun Young Yoon
J. Korean Soc. Precis. Eng. 2025;42(12):1079-1087.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.034
Coherent Beam Combining (CBC) is a promising technique for enhancing laser output power by accurately aligning the phase and position of multiple laser beams. The Stochastic Parallel Gradient Descent (SPGD) algorithm is commonly used in CBC systems due to its simplicity and scalability. However, its dependence on fixed control parameters can result in slow convergence rates and diminished control stability. To overcome these challenges, this study introduces an adaptive SPGD algorithm that dynamically adjusts the perturbation amplitude and learning rate based on the real-time value of the objective function. This approach accelerates convergence during the initial stages by increasing control inputs when the objective function value is low, while ensuring stability as the function nears its maximum in later stages. Numerical simulations of 7-channel and 19-channel CBC systems revealed that the adaptive SPGD algorithm reduced average iteration counts by 26.4% and 18.1%, respectively, compared to the basic SPGD. Furthermore, the overall control performance improved, achieving high beam combining efficiency with reduced total computation time. This proposed algorithm serves as a straightforward yet effective enhancement to the conventional SPGD method, improving both convergence speed and stability.
  • 25 View
  • 6 Download

Specials

Electrochemical Evaluation of PrOx Capping Layer in LT-SOFCs via Sputtering Process
Ji Woong Jeon, Geon Hyeop Kim, Hyeon Min Lee, Jun Geon Park, Gu Young Cho
J. Korean Soc. Precis. Eng. 2025;42(12):1003-1010.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.00014
Solid Oxide Fuel Cells (SOFCs) are energy conversion devices known for their significantly higher power density compared to other fuel cell types. However, their high operating temperatures pose challenges related to thermal stability. To address this, research is focusing on Low-Temperature SOFCs (LT-SOFCs), which function at lower temperatures and exhibit enhanced electrochemical performance. While various electrode materials are utilized in SOFCs, platinum (Pt) stands out for its excellent electronic conductivity and catalytic activity. Unfortunately, at the operating temperatures of SOFCs, Pt tends to agglomerate, leading to a rapid reduction in the triple phase boundary (TPB) and a subsequent decline in electrochemical reactions. In this study, LT-SOFCs were fabricated with a Praseodymium Oxide (PrOx) capping layer applied to a porous Pt cathode using sputtering, with various thicknesses achieved by adjusting the deposition time. The electrochemical performance of the LT-SOFCs was measured at 500oC. Additionally, the degradation behavior of the LT-SOFCs was assessed by applying a constant voltage of 0.5 V for 48 hours. Scanning Electron Microscopy (SEM) analysis was also conducted on the PrOx capping layer thin films under the same operating conditions.
  • 35 View
  • 6 Download
FEM Studies of CMP Retainer Ring Using Metamodel
Do Yeong Jung, Seung Heon Lee, Jun Geon Park, Jae Phil Boo, Jung Woo Lee, Byoung Wan Kim, Gu Young Cho
J. Korean Soc. Precis. Eng. 2025;42(12):1065-1070.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.00007
This study introduces a novel retainer ring design aimed at mitigating the edge effect during chemical mechanical planarization. The innovative design features an arch-shaped geometry that creates a bending effect, thereby reducing excessive pressure on the wafer's edge. A two-dimensional axisymmetric finite element model was developed, and simulation data were utilized to create a metamodel. Multi-objective optimization was conducted using an evolutionary algorithm, focusing on the normal contact stress on the wafer surface. Representative Pareto-optimal designs were analyzed to assess the distribution of normal contact stresses. The results demonstrated that the proposed design significantly reduced peak normal stresses and enhanced stress uniformity, especially at the wafer edge. This optimized retainer ring is anticipated to improve wafer edge quality and increase semiconductor yield.
  • 23 View
  • 6 Download

Regular

Study on Fatigue Life Prediction of Crossed Roller Bearings
Gilbert Rivera, Dong-Hyeok Kim, Dong Uk Kim, Seong-Wook Hong
J. Korean Soc. Precis. Eng. 2025;42(12):1088-1098.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.097
This paper presents a method for estimating the fatigue life of crossed roller bearings (XRBs). XRBs feature a single row of rollers arranged alternately at right angles, making them ideal for applications that require high precision and a compact design. In rolling-element bearings, fatigue life is a crucial design parameter for ensuring long-term reliability and performance. However, existing fatigue life estimation models for XRBs in the literature are limited to basic rating life, with no models available for reference rating life. To address this gap, we developed a comprehensive fatigue life prediction model specifically for XRBs. We formulated a corresponding dynamic load rating to align with the values provided by bearing manufacturers and calibrated an unknown adjustment factor for XRBs using a commercial program. Additionally, a parametric study was conducted to investigate the impact of varying diametral clearance, external loads, roller dimensions, and roller profile parameters on the fatigue life of XRBs.
  • 23 View
  • 5 Download

Specials

Fabrication of Yttria and Zirconia Co-sputtering Cathode Functional Layer for Low Temperature Solid Oxide Fuel Cells
Taehyeon Lee, Seungbong Oh, Davin Jeong, Soonwook Hong
J. Korean Soc. Precis. Eng. 2025;42(12):997-1002.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.00013
A yttria-stabilized zirconia (YSZ) cathode functional layer (CFL) was fabricated using a co-sputtering process to improve the oxygen reduction reaction (ORR) in solid oxide fuel cells (SOFCs). To optimize the yttria molar percentage and achieve a nano-granular structure with enhanced grain boundary density, the DC sputtering power for the metallic yttrium target was varied at 10, 30, and 50 W. Structural and compositional analyses were performed using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and X-ray diffraction (XRD). The results indicated that a DC power of 30 W resulted in a well-developed grain structure with high grain boundary density and an yttria composition close to the optimal molar percentage of 8-10 mol %. Under these optimized conditions, the SOFC with the co-sputtered YSZ CFL achieved a maximum power output of 9.22 mW/cm² at 450oC, representing approximately a 43% enhancement compared to the reference cell. This highlights the significant potential of co-sputtering for future low-temperature SOFC applications.
  • 37 View
  • 5 Download
Dendrite Growth Suppression in Lithium Metal Batteries with Composite Quasi-solid Electrolytes
Jeongeun Park, Jinhyeong An, Jiwoong Bae
J. Korean Soc. Precis. Eng. 2025;42(12):1037-1043.
Published online December 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.00010
Secondary batteries are crucial for eco-friendly systems, but existing technologies struggle with energy density and safety issues. This study aims to develop a next-generation battery utilizing quasi-solid electrolytes (QSE), which combine the advantages of both liquid and solid electrolytes. However, QSEs often lack the mechanical strength necessary to prevent lithium dendrite growth. To address this challenge, two strategies were proposed and experimentally validated. The first strategy involves creating a QSE-separator composite (QSE-PI) by integrating QSE with a polyimide (PI) separator. Among the various options, PI with a thickness greater than 20 μm and a pore size of 2-5 μm exhibited superior electrolyte absorption and dendrite suppression. This configuration allowed for rapid lithium plating/stripping, high ionic conductivity (1.7 × 10-3 S cm-1), and excellent Coulombic efficiency (99.94%).The second strategy incorporates silica (SiO2) as a ceramic filler in the QSE-PI to enhance mechanical strength and ion transport. The addition of SiO2 disrupted polymer crystallinity, increased the amorphous regions, and effectively suppressed dendrite formation. Notably, SiO2 particles larger than 10 μm improved cycle stability, with the composite maintaining performance for over 50 cycles, compared to only 30 cycles for the version without filler.
  • 37 View
  • 5 Download
SPECIAL
Design and Evaluation of 3D Printed Molds for Engineered Muscle Fabrication
Hyun Ji Yang, Min Ju Choi, Yeong-Jin Choi
J. Korean Soc. Precis. Eng. 2025;42(9):689-694.
Published online September 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.082

Bioengineered skeletal muscle constructs that replicate the architectural, metabolic, and contractile characteristics of native tissue are becoming essential platforms for disease modeling and advancing regenerative medicine. The creation of these constructs relies heavily on cell-mediated gel compaction, a crucial process for facilitating tissue maturation. To ensure myotube alignment, muscle cell-laden hydrogels are typically embedded in 3D-printed molds with anchor structures. However, structural detachment or rupture often occurs during culture, which undermines the stability and functional differentiation of the engineered tissue. To address these challenges, we developed an improved anchor-type mold through a series of structural optimizations. We first compared two anchor geometries—linear and mushroom-shaped pillars—within rectangular frames, finding that the mushroom-shaped design provided better structural retention. However, the rectangular frames led to excessive gel compaction, causing detachment and disrupting cellular alignment, especially in central regions. To alleviate these issues, we introduced a dumbbell-shaped mold with a narrowed midsection to better distribute mechanical stress. This new mold effectively promoted aligned myotube formation, long-term construct maintenance, and functional maturation. Our findings underscore the benefits of structurally optimized molds in creating stable engineered muscle, with significant implications for regenerative therapies and preclinical testing platforms.

  • 36 View
  • 5 Download